1887

Abstract

A Gram-stain-negative, aerobic, chemoheterotrophic and rod-shaped strain, designated as C5, was isolated from intertidal surface seawater in Taizhou, Zhejiang Province, PR China and characterized using a polyphasic taxonomic approach. Strain C5 could produce carotenoids and bacteriochlorophyll . Growth was observed at 20–45 °C, at pH 6.0–9.0 and with 0–8.0 % (w/v) NaCl. The 16S rRNA gene sequence identity analysis revealed that strain C5 was the most closely related to CGMCC 1.7715 (98.8%) and DSM 8509 (98.7%). The phylogenetic reconstruction based on core genes demonstrated that strain C5 was clustered into the members of the genus . The average nucleotide identity and digital DNA–DNA hybridization values between strain C5 and type strains were lower than 76 and 25 %, respectively. The predominant and minor respiratory quinones were identified as ubiquinone-10 and ubiquinone-9. The major fatty acids were summed feature 8 (C 7 and/or C 6) and iso-C. Polar lipids included phosphatidylethanolamine, phosphatidylglycerol, a glycosphingolipid and an unidentified aminolipid. Based on the genetic, chemotaxonomic and phenotypic data, strain C5 is concluded to represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is C5 (=MCCC 1K05108=KCTC 92307).

Funding
This study was supported by the:
  • Scientific Research Fund of the Second Institute of Oceanography, MNR (Award JB2003)
    • Principle Award Recipient: XuLin
  • National Science and Technology Fundamental Resources Investigation Program of China (Award 2021FY100900)
    • Principle Award Recipient: XuLin
  • China Postdoctoral Science Foundation (Award 2019M652042)
    • Principle Award Recipient: XuLin
  • Natural Science Foundation of China (Award 32000001)
    • Principle Award Recipient: XuLin
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005616
2022-12-13
2024-05-20
Loading full text...

Full text loading...

References

  1. Shiba T, Simidu U. Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 1982; 32:211–217 [View Article]
    [Google Scholar]
  2. Subhash Y, Tushar L, Sasikala C, Ramana CV. Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov.isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 2013; 63:4524–4532 [View Article]
    [Google Scholar]
  3. Xu L, Sun C, Fang C, Oren A, Xu X-W. Genomic-based taxonomic classification of the family Erythrobacteraceae. Int J Syst Evol Microbiol 2020; 70:4470–4495 [View Article] [PubMed]
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic Names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  5. Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P et al. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 1994; 44:427–434 [View Article]
    [Google Scholar]
  6. Fuerst JA, Hawkins JA, Holmes A, Sly LI, Moore CJ et al. Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int J Syst Bacteriol 1993; 43:125–134 [View Article]
    [Google Scholar]
  7. Yoon J-H, Lee M-H, Oh T-K. Porphyrobacter donghaensis sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 2004; 54:2231–2235 [View Article] [PubMed]
    [Google Scholar]
  8. Yoon J-H, Kang S-J, Lee M-H, Oh HW, Oh T-K. Porphyrobacter dokdonensis sp. nov., isolated from sea water. Int J Syst Evol Microbiol 2006; 56:1079–1083 [View Article] [PubMed]
    [Google Scholar]
  9. Tonon LAC, Moreira APB, Thompson F et al. The family Erythrobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin, Heidelberg: Springer; 2014 pp 213–235
    [Google Scholar]
  10. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  11. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  15. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  17. Do K-A. A simulation study of balanced and antithetic bootstrap resampling methods. J Stat Comput Simul 1992; 40:153–166 [View Article]
    [Google Scholar]
  18. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article]
    [Google Scholar]
  19. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 2001; 29:22–28 [View Article] [PubMed]
    [Google Scholar]
  20. Consortium GO Gene ontology consortium: going forward. Nucleic Acids Res 2015; 43:D1049–56 [View Article]
    [Google Scholar]
  21. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45:D353–D361 [View Article]
    [Google Scholar]
  22. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  25. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:1–14 [View Article] [PubMed]
    [Google Scholar]
  26. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  27. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  28. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  29. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013; 30:1188–1195 [View Article] [PubMed]
    [Google Scholar]
  30. Xu L, Wu Y-H, Jian S-L, Wang C-S, Wu M et al. Pseudohongiellanitratireducens sp. nov., isolated from seawater, and emended description of the genus Pseudohongiella. Int J Syst Evol Microbiol 2016; 66:5155–5160 [View Article] [PubMed]
    [Google Scholar]
  31. Xu X-W, Huo Y-Y, Bai X-D, Wang C-S, Oren A et al. Kordiimonas lacus sp. nov., isolated from a ballast water tank, and emended description of the genus Kordiimonas. Int J Syst Evol Microbiol 2011; 61:422–426 [View Article] [PubMed]
    [Google Scholar]
  32. Shi X-L, Wu Y-H, Jin X-B, Wang C-S, Xu X-W. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrate-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2017; 67:237–242 [View Article] [PubMed]
    [Google Scholar]
  33. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T. eds In:Methods for General and Molecular Microbiology, 3rd edn. Washington, DC: ASM Press; 2007 pp 330–393
    [Google Scholar]
  35. Gregersen T. Rapid method for distinction of Gram-negative from gram-positive bacteria. European J Appl Microbiol Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  36. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  37. Park S, Chen S, Yoon J-H. Erythrobacter insulae sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2020; 70:1470–1477 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005616
Loading
/content/journal/ijsem/10.1099/ijsem.0.005616
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error