1887

Abstract

Strain C17-3 was isolated from blueberry fruits collected from a farmland located in Damyang-gun, Jeollanam-do, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences allocated strain C17-3 to the genus , where it occupied a rather isolated line of descent with 430A and LMG 27439 as the nearest neighbours (98.9 % sequence similarity to both species). The highest average nucleotide identity and digital DNA–DNA hybridization values were 76.3 % and 21.7 % with TBRC 12339; both values were well below the cutoff values for species delineation. Cells are strictly aerobic, Gram-stain-negative rods, catalase-positive and oxidase-negative. The DNA G+C content calculated from the genome sequence was 59.2 %. Major fatty acids were summed feature 8 (Cω6 and/or Cω7) and Ccyclo ω8. The major isoprenoid quinone was ubiquinone 9. On the basis of the results of phylogenetic analyses, phenotypic features and genomic comparisons, it is proposed that strain C17-3 represents a novel species of the genus and the name sp. nov. is proposed. The type strain is C17-3 (= KACC 21233 = LMG 31758).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005614
2022-11-29
2024-07-23
Loading full text...

Full text loading...

References

  1. Wang B, Shao Y, Chen T, Chen W, Chen F. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics. Sci Rep 2015; 5:1–14 [View Article] [PubMed]
    [Google Scholar]
  2. Nakano S, Fukaya M, Horinouchi S. Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti. FEMS Microbiol Lett 2004; 235:315–322 [View Article]
    [Google Scholar]
  3. Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G et al. Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 2010; 76:6963–6970 [View Article] [PubMed]
    [Google Scholar]
  4. De Roos J, De Vuyst L. Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol 2018; 49:115–119 [View Article] [PubMed]
    [Google Scholar]
  5. Guzman J, Vilcinskas A. Genome analysis suggests the bacterial family Acetobacteraceae is a source of undiscovered specialized metabolites. Antonie Van Leeuwenhoek 2022; 115:41–58 [View Article] [PubMed]
    [Google Scholar]
  6. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  7. Kim KH, Cho GY, Chun BH, Weckx S, Moon JY et al. Acetobacter oryzifermentans sp. nov., isolated from Korean traditional vinegar and reclassification of the type strains of Acetobacter pasteurianus subsp. ascendens (Henneberg 1898) and Acetobacter pasteurianus subsp. paradoxus (Frateur 1950) as Acetobacter ascendens sp. nov., comb. nov. Syst Appl Microbiol 2018; 41:324–332 [View Article]
    [Google Scholar]
  8. Baek JH, Kim KH, Moon JY, Yeo SH, Jeon CO. Acetobacter oryzoeni sp. nov., isolated from Korean rice wine vinegar. Int J Syst Evol Microbiol 2020; 70:2026–2033 [View Article] [PubMed]
    [Google Scholar]
  9. Cleenwerck I, Camu N, Engelbeen K, De Winter T, Vandemeulebroecke K et al. Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int J Syst Evol Microbiol 2007; 57:1647–1652 [View Article] [PubMed]
    [Google Scholar]
  10. Cleenwerck I, Gonzalez A, Camu N, Engelbeen K, De Vos P et al. Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. Int J Syst Evol Microbiol 2008; 58:2180–2185 [View Article] [PubMed]
    [Google Scholar]
  11. Yukphan P, Charoenyingcharoen P, Kingcha Y, Likhitrattanapisal S, Muangham S et al. Acetobacter garciniae sp. nov., an acetic acid bacterium isolated from fermented mangosteen peel in Thailand. Int J Syst Evol Microbiol 2021; 71:5052 [View Article] [PubMed]
    [Google Scholar]
  12. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T et al. Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J Gen Appl Microbiol 2000; 46:147–165 [View Article]
    [Google Scholar]
  13. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002; 52:1551–1558 [View Article]
    [Google Scholar]
  14. Spitaels F, Li L, Wieme A, Balzarini T, Cleenwerck I et al. Acetobacter lambici sp. nov., isolated from fermenting lambic beer. Int J Syst Evol Microbiol 2014; 64:1083–1089 [View Article]
    [Google Scholar]
  15. Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T et al. Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J Gen Appl Microbiol 2001; 47:119–131 [View Article]
    [Google Scholar]
  16. Pitiwittayakul N, Yukphan P, Chaipitakchonlatarn W, Yamada Y, Theeragool G. Acetobacter thailandicus sp. nov., for a strain isolated in Thailand. Ann Microbiol 2015; 65:1855–1863 [View Article]
    [Google Scholar]
  17. Iino T, Suzuki R, Kosako Y, Ohkuma M, Komagata K et al. Acetobacter okinawensis sp. nov., Acetobacter papayae sp. nov., and Acetobacter persicus sp. nov.; novel acetic acid bacteria isolated from stems of sugarcane, fruits, and a flower in Japan. J Gen Appl Microbiol 2012; 58:235–243 [View Article] [PubMed]
    [Google Scholar]
  18. Vu HTL, Yukphan P, Bui VTT, Charoenyingcharoen P, Malimas S et al. Acetobacter sacchari sp. nov., for a plant growth-promoting acetic acid bacterium isolated in Vietnam. Ann Microbiol 2019; 69:1155–1163 [View Article]
    [Google Scholar]
  19. Sievers M, Swings J. Acetobacter. In Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp 1–7 [View Article]
    [Google Scholar]
  20. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article]
    [Google Scholar]
  21. Asai T, Iizuka H, Komagata K. The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 1964; 10:95–126 [View Article]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1964; 20:406 [View Article]
    [Google Scholar]
  26. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  29. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article]
    [Google Scholar]
  30. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  31. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  33. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  34. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  35. Sombolestani AS, Cleenwerck I, Cnockaert M, Borremans W, Wieme AD et al. Novel acetic acid bacteria from cider fermentations: Acetobacter conturbans sp. nov. and Acetobacter fallax sp. nov. Int J Syst Evol Microbiol 2020; 70:6163–6171 [View Article]
    [Google Scholar]
  36. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE: MIDI Inc: 1990
    [Google Scholar]
  37. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  38. Dumolin C, Aerts M, Verheyde B, Schellaert S, Vandamme T et al. Introducing SPeDE: high-throughput dereplication and accurate determination of microbial diversity from matrix-assisted laser desorption-ionization time of flight mass spectrometry data. mSystems 2019; 4:e00437-19 [View Article]
    [Google Scholar]
  39. Pitiwittayakul N, Theeragool G, Yukphan P, Chaipitakchonlatarn W, Malimas T et al. Acetobacter suratthanensis sp. nov., an acetic acid bacterium isolated in Thailand. Ann Microbiol 1996; 66:1157–1166 [View Article]
    [Google Scholar]
  40. Strohalm M, Kavan D, Novák P, Volný M, Havlícek V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 2010; 82:4648–4651 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005614
Loading
/content/journal/ijsem/10.1099/ijsem.0.005614
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error