1887

Abstract

A Gram-stain-negative, oxidase- and catalase-positive, facultative anaerobic motile bacterium, designated strain OG9-811, was isolated from the gut of an oyster collected in the Yellow Sea, Republic of Korea. The strain grew at 10–37 °C, pH 6.0–9.0 and with 0.5–10% (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain OG9-811 affiliated with the genus , with the highest sequence similarity of 98.2% to ATCC BAA-450 followed by R-40492 (98.0 %), LMG 20362 (97.7 %) and LMG 20536 (97.6 %); other relatives were JCM 16456 (97.4 %), NBRC 103150 (97.0 %) and CIP 102972 (97.0 %). The complete genome of strain OG9-811 comprised two chromosomes of a total 4 807 684 bp and the G+C content was 50.2 %. Results of analysis based on the whole genome sequence showed the distinctiveness of strain OG9-811. The average nucleotide identity (ANI) values between strain OG9-811 and the closest strains ATCC BAA-450, R-40492, LMG 20362, KCTC 12702 JCM 16456, ATCC 33809 and CIP 102972 were 73.0, 72.6, 73.3, 73.0, 72.7, 78.5 and 77.8 %, respectively, while the digital DNA–DNA hybridization values between strain OG9-811 and the above closely related strains were 20.8, 21.2, 20.8, 21.7, 20.7, 23.2 and 22.4 %, respectively. The major fatty acids of strain OG9-811 were summed feature 3 (C 7 and/or C 6), summed feature 8 (C c and/or C 7) and C. The polar lipids contained phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Strain OG9-811 contained Q-8 as a quinone. On the basis of polyphasic taxonomic characteristics, strain OG9-811 is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is OG9-811 (=KCTC 72623=GDMCC 1.2610).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005586
2022-10-21
2024-03-05
Loading full text...

Full text loading...

References

  1. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  2. Lippi D, Gotuzzo E. The greatest steps towards the discovery of Vibrio cholerae. Clin Microbiol Infect 2014; 20:191–195 [View Article]
    [Google Scholar]
  3. Zhang X, Lin H, Wang X, Austin B. Significance of Vibrio species in the marine organic carbon cycle—a review. Sci China Earth Sci 2018; 61:1357–1368 [View Article]
    [Google Scholar]
  4. Daboul J, Weghorst L, DeAngelis C, Plecha SC, Saul-McBeth J et al. Characterization of Vibrio cholerae isolates from freshwater sources in northwest Ohio. PLoS ONE 2020; 15:e0238438 [View Article]
    [Google Scholar]
  5. Gomez-Gil B, Tron-Mayén L, Roque A, Turnbull JF, Inglis V et al. Species of Vibrio isolated from hepatopancreas, haemolymph and digestive tract of a population of healthy juvenile Penaeus vannamei. Aquaculture 1998; 163:1–9 [View Article]
    [Google Scholar]
  6. Poli A, Romano I, Mastascusa V, Buono L, Orlando P et al. Vibrio coralliirubri sp. nov., a new species isolated from mucus of red coral (Corallium rubrum) collected at Procida Island, Italy. Antonie van Leeuwenhoek 2018; 111:1105–1115 [View Article]
    [Google Scholar]
  7. Thompson FL, Iida T, Swings J. Biodiversity of vibrios. Microbiol Mol Biol Rev 2004; 68:403–431 [View Article]
    [Google Scholar]
  8. Froelich BA, Noble RT. Vibrio bacteria in raw oysters: managing risks to human health. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150209 [View Article]
    [Google Scholar]
  9. Thompson JR, Polz MF. Dynamics of Vibrio populations and their role in environmental nutrient cycling. In The Biology of Vibrios, 1st edn. Washington, DC: ASM Press; 2006 p 455
    [Google Scholar]
  10. Yuan Y, Feng Z, Wang J. Vibrio vulnificus hemolysin: biological activity, regulation of vvhA expression, and role in pathogenesis. Front Immunol 2020; 11:599439 [View Article]
    [Google Scholar]
  11. Colwell RR. Polyphasic taxonomy of the genus vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 1970; 104:410–433 [View Article] [PubMed]
    [Google Scholar]
  12. Ben-Haim Y, Thompson FL, Thompson CC, Cnockaert MC, Hoste B et al. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 2003; 53:309–315 [View Article] [PubMed]
    [Google Scholar]
  13. de Souza Valente C, Wan AHL. Vibrio and major commercially important vibriosis diseases in decapod crustaceans. J Invertebr Pathol 2021; 181:107527 [View Article] [PubMed]
    [Google Scholar]
  14. Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK et al. Vibrio spp. infections. Nat Rev Dis Primers 2018; 4:8 [View Article] [PubMed]
    [Google Scholar]
  15. Kim W, Lee JH, Kwon KK. Abyssisolibacter fermentans gen. nov. sp. nov., isolated from deep sub-seafloor sediment. J Microbiol 2016; 54:347–352 [View Article]
    [Google Scholar]
  16. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260–296
    [Google Scholar]
  17. Pheng S, Han HL, Park DS, Chung CH, Kim SG. Lactococcus kimchii sp. nov., a new lactic acid bacterium isolated from kimchi. Int J Syst Evol Microbiol 2020; 70:505–510 [View Article]
    [Google Scholar]
  18. Jiang L, Pheng S, Lee KC, Kang SW, Jeong JC et al. Cohnella abietis sp. nov., isolated from Korean fir (Abies koreana) rhizospheric soil of Halla mountain. J Microbiol 2019; 57:953–958 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  23. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  25. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  28. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  29. Leitão JH. Microbial virulence factors. Int J Mol Sci 2020; 21:5320 [View Article]
    [Google Scholar]
  30. Ashrafudoulla M, Mizan MFR, Park H, Byun K-H, Lee N et al. Genetic relationship, virulence factors, drug resistance profile and biofilm formation ability of Vibrio parahaemolyticus isolated from mussel. Front Microbiol 2019; 10:513 [View Article]
    [Google Scholar]
  31. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article]
    [Google Scholar]
  32. Lasa A, Gibas CJ, Romalde JL. Comparative genomic analysis of two Vibrio toranzoniae strains with different virulence capacity reveals clues on its pathogenicity for fish. Front Microbiol 2017; 8:86 [View Article]
    [Google Scholar]
  33. Harvey KL, Jarocki VM, Charles IG, Djordjevic SP. The diverse functional roles of elongation factor tu (EF-Tu) in microbial pathogenesis. Front Microbiol 2019; 10:2351 [View Article]
    [Google Scholar]
  34. Schwarz S, Hood RD, Mougous JD. What is type VI secretion doing in all those bugs?. Trends Microbiol 2010; 18:531–537 [View Article] [PubMed]
    [Google Scholar]
  35. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 2006; 103:1528–1533 [View Article]
    [Google Scholar]
  36. Chen Y, Wong J, Sun GW, Liu Y, Tan G-YG et al. Regulation of type VI secretion system during Burkholderia pseudomallei infection. Infect Immun 2011; 79:3064–3073 [View Article] [PubMed]
    [Google Scholar]
  37. Silverman JM, Brunet YR, Cascales E, Mougous JD. Structure and regulation of the type VI secretion system. Annu Rev Microbiol 2012; 66:453–472 [View Article] [PubMed]
    [Google Scholar]
  38. Brunet YR, Hénin J, Celia H, Cascales E. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep 2014; 15:315–321 [View Article] [PubMed]
    [Google Scholar]
  39. Cianfanelli FR, Monlezun L, Coulthurst SJ. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol 2016; 24:51–62 [View Article] [PubMed]
    [Google Scholar]
  40. Cianfanelli FR, Alcoforado Diniz J, Guo M, De Cesare V, Trost M et al. VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog 2016; 12:e1005735 [View Article]
    [Google Scholar]
  41. Korotkov KV, Sandkvist M, Hol WGJ. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 2012; 10:336–351 [View Article] [PubMed]
    [Google Scholar]
  42. Wu C, Zhao Z, Liu Y, Zhu X, Liu M et al. Type III secretion 1 effector gene diversity among Vibrio isolates from coastal areas in China. Front Cell Infect Microbiol 2020; 10:301 [View Article]
    [Google Scholar]
  43. Li C, Pan D, Li M, Wang Y, Song L et al. Aerobactin-mediated iron acquisition enhances biofilm formation, oxidative stress resistance, and virulence of Yersinia pseudotuberculosis. Front Microbiol 2021; 12:699913 [View Article]
    [Google Scholar]
  44. Oh MH, Lee SM, Lee DH, Choi SH. Regulation of the Vibrio vulnificus hupA gene by temperature alteration and cyclic AMP receptor protein and evaluation of its role in virulence. Infect Immun 2009; 77:1208–1215 [View Article] [PubMed]
    [Google Scholar]
  45. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article]
    [Google Scholar]
  46. Konaté MM, Plata G, Park J, Usmanova DR, Wang H et al. Molecular function limits divergent protein evolution on planetary timescales. Elife 2019; 8:e39705 [View Article]
    [Google Scholar]
  47. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  48. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  49. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580 [View Article]
    [Google Scholar]
  50. Yoshizawa S, Tsuruya Y, Fukui Y, Sawabe T, Yokota A et al. Vibrio jasicida sp. nov., a member of the Harveyi clade, isolated from marine animals (packhorse lobster, abalone and Atlantic salmon). Int J Syst Evol Microbiol 2012; 62:1864–1870 [View Article] [PubMed]
    [Google Scholar]
  51. Ueno A, Tamazawa S, Tamamura S, Murakami T, Kiyama T et al. Desulfovibrio subterraneus sp. nov., a mesophilic sulfate-reducing deltaproteobacterium isolated from a deep siliceous mudstone formation. Int J Syst Evol Microbiol 2021; 71:1–10 [View Article]
    [Google Scholar]
  52. Geng Y-H, He X-Y, Li N, Li J, Gu T-J et al. Vibrio algicola sp. nov., isolated from the surface of coralline algae. Int J Syst Evol Microbiol 2020; 70:5149–5155 [View Article] [PubMed]
    [Google Scholar]
  53. Zhao H, Shan J, Wang T, Tian Y, Shen Y et al. Vibrio marinisediminis sp. nov., isolated from marine sediment. Curr Microbiol 2021; 78:810–815 [View Article]
    [Google Scholar]
  54. Sasser M. Technical Note 101: Identification of bacteria by gas chromatography of cellular fatty acids. MIDI; 1990
  55. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  56. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  57. Thompson FL, Li Y, Gomez-Gil B, Thompson CC, Hoste B et al. Vibrio neptunius sp. nov., Vibrio brasiliensis sp. nov. and Vibrio xuii sp. nov., isolated from the marine aquaculture environment (bivalves, fish, rotifers and shrimps). Int J Syst Evol Microbiol 2003; 53:245–252 [View Article]
    [Google Scholar]
  58. Li Y, Liang J, Liu R, Xue C-X, Zhou S et al. Vibrio sinensis sp. nov. and Vibrio viridaestus sp. nov., two marine bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 2020; 70:889–896 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005586
Loading
/content/journal/ijsem/10.1099/ijsem.0.005586
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error