1887

Abstract

Three strains (H4-D09, S2-D11 and S9-F39) of a member of the genus attributed to a novel species were isolated from topsoil of temperate grasslands. The genome sequence of the type strain H4-D09 exhibited a complete set of genes required for denitrification as well as methylotrophy. The genome of H4-D09 included genes for two alternative pathways of formaldehyde oxidation. Besides the genes for the canonical glutathione (GSH)-dependent formaldehyde oxidation pathway, all genes for the tetrahydrofolate–formaldehyde oxidation pathway were identified. The strain has the potential to utilize methanol and/or methylamine as a single carbon source as evidenced by the presence of methanol dehydrogenase () and methylamine dehydrogenase () genes. Apart from dissimilatory denitrification genes (, , and ), genes for assimilatory nitrate () and nitrite reductases () were also identified. The results of phylogenetic analysis based on 16S rRNA genes coupled with riboprinting revealed that all three strains represented the same species of genus . Core genome phylogeny of the type strain H4-D09 indicated that and are the closest phylogenetic neighbours. The average nucleotide index (ANI) and digital DNA–DNA hybridization (dDDH) with the closest phylogenetic neighbours revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The major respiratory quinone is Q-10, and the predominant cellular fatty acids are Cω7, Ccyclo ω7, and C, which correspond to those detected in other members of the genus. The polar lipid profile consists of a diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), aminolipid (AL), glycolipid (GL) and an unidentified lipid (L).

On the basis of our results, we concluded that the investigated isolates represent a novel species of the genus , for which the name sp. nov. (type strain H4-D09=LMG 31941= DSM 111585) is proposed.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award DFG Priority Program 1374)
    • Principle Award Recipient: SteffenKolb
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005581
2022-10-21
2024-05-18
Loading full text...

Full text loading...

References

  1. Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017; 2:1533–1542 [View Article] [PubMed]
    [Google Scholar]
  2. Jones HJ, Kröber E, Stephenson J, Mausz MA, Jameson E et al. A new family of uncultivated bacteria involved in methanogenesis from the ubiquitous osmolyte glycine betaine in coastal saltmarsh sediments. Microbiome 2019; 7:120 [View Article] [PubMed]
    [Google Scholar]
  3. Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 2017; 15:579–590 [View Article] [PubMed]
    [Google Scholar]
  4. Hallin S, Bodelier PLE. Grand challenges in terrestrial microbiology: moving on from a decade of progress in microbial biogeochemistry. Front Microbiol 2020; 11:981 [View Article]
    [Google Scholar]
  5. Doronina NV, Trotsenko YA, Kuznetzov BB, Tourova TP. Emended description of Paracoccus kondratievae . Int J Syst Evol Microbiol 2002; 52:679–682 [View Article] [PubMed]
    [Google Scholar]
  6. Sheu S-Y, Hsieh T-Y, Young C-C, Chen W-M. Paracoccus fontiphilus sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2018; 68:2054–2060 [View Article] [PubMed]
    [Google Scholar]
  7. Tsubokura A, Yoneda H, Mizuta H. Paracoccus carotinifaciens sp. nov., a new aerobic Gram-negative astaxanthin-producing bacterium. Int J Syst Bacteriol 1999; 49 Pt 1:277–282 [View Article]
    [Google Scholar]
  8. Zhang S, Gan L, Qin Q, Long X, Zhang Y et al. Paracoccus acridae sp. nov., isolated from the insect Acrida cinerea living in deserted cropland. Int J Syst Evol Microbiol 2016; 66:3492–3497 [View Article]
    [Google Scholar]
  9. Funke G, Frodl R, Sommer H. First comprehensively documented case of Paracoccus yeei infection in a human. J Clin Microbiol 2004; 42:3366–3368 [View Article] [PubMed]
    [Google Scholar]
  10. McGinnis JM, Cole JA, Dickinson MC, Mingle LA, Lapierre P et al. Paracoccus sanguinis sp. nov., isolated from clinical specimens of New York State patients. Int J Syst Evol Microbiol 2015; 65:1877–1882 [View Article] [PubMed]
    [Google Scholar]
  11. Liu X-Y, Wang B-J, Jiang C-Y, Liu S-J. Paracoccus sulfuroxidans sp. nov., a sulfur oxidizer from activated sludge. Int J Syst Evol Microbiol 2006; 56:2693–2695 [View Article] [PubMed]
    [Google Scholar]
  12. Lipski A, Reichert K, Reuter B, Spröer C, Altendorf K. Identification of bacterial isolates from biofilters as Paracoccus alkenifer sp. nov. and Paracoccus solventivorans with emended description of Paracoccus solventivorans . Int J Syst Bacteriol 1998; 48 Pt 2:529–536 [View Article] [PubMed]
    [Google Scholar]
  13. Baker SC, Ferguson SJ, Ludwig B, Page MD, Richter OM et al. Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 1998; 62:1046–1078 [View Article] [PubMed]
    [Google Scholar]
  14. Kelly DP, Rainey FA, Wood A. The genus Paracoccus . In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. eds The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses New York, NY: Springer; 2006 pp 232–249
    [Google Scholar]
  15. Liu Y, Gan L, Chen Z, Megharaj M, Naidu R. Removal of nitrate using Paracoccus sp. YF1 immobilized on bamboo carbon. J Hazard Mater 2012; 229–230:419–425 [View Article]
    [Google Scholar]
  16. Czarnecki J, Bartosik D. Diversity of methylotrophy pathways in the genus Paracoccus (Alphaproteobacteria). Curr Issues Mol Biol 2019; 33:117–132 [View Article]
    [Google Scholar]
  17. de Vries GE, Harms N, Hoogendijk J, Stouthamer AH. Isolation and characterization of Paracoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (nGATCn) DNA-modifying property. Arch Microbiol 1989; 152:52–57 [View Article]
    [Google Scholar]
  18. Urakami T, Araki H, Oyanagi H, Suzuki K, Komagata K. Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N,N-dimethylformamide. Int J Syst Bacteriol 1990; 40:287–291 [View Article]
    [Google Scholar]
  19. Kim SG, Bae HS, Lee ST. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways. Arch Microbiol 2001; 176:271–277 [View Article] [PubMed]
    [Google Scholar]
  20. Sanjeevkumar S, Nayak AS, Santoshkumar M, Siddavattam D, Karegoudar TB. Paracoccus denitrificans SD1 mediated augmentation with indigenous mixed cultures for enhanced removal of N,N-dimethylformamide from industrial effluents. Biochem Eng J 2013; 79:1–6 [View Article]
    [Google Scholar]
  21. Chistoserdova L. Modularity of methylotrophy, revisited. Environ Microbiol 2011; 13:2603–2622 [View Article] [PubMed]
    [Google Scholar]
  22. Dziewit L, Czarnecki J, Prochwicz E, Wibberg D, Schlüter A et al. Genome-guided insight into the methylotrophy of Paracoccus aminophilus JCM 7686. Front Microbiol 2015; 6:852 [View Article]
    [Google Scholar]
  23. Behrendt U, Schumann P, Stieglmeier M, Pukall R, Augustin J et al. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity--description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst Appl Microbiol 2010; 33:328–336 [View Article] [PubMed]
    [Google Scholar]
  24. Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N et al. Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ Microbiol 2006; 72:2637–2643 [View Article] [PubMed]
    [Google Scholar]
  25. Behrendt U, Ulrich A, Schumann P. Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol 2003; 53:1461–1469 [View Article]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  27. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  30. Timsy T, Spanner T, Ulrich A, Kublik S, Foesel BU et al. Pseudomonas campi sp. nov., a nitrate-reducing bacterium isolated from grassland soil. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  31. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  32. Behrendt U, Wende S, Kolb S, Ulrich A. Genome-based phylogeny of the genera Proteus and Cosenzaea and description of Proteus terrae subsp. terrae subsp. nov. and Proteus terrae subsp. cibarius subsp. nov. Int J Syst Evol Microbiol 2019; 71: [View Article]
    [Google Scholar]
  33. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria . Front Microbiol 2020; 11:468 [View Article]
    [Google Scholar]
  34. Palmer M, Steenkamp ET, Blom J, Hedlund BP, Venter SN. All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy. Int J Syst Evol Microbiol 2020; 70:2937–2948 [View Article] [PubMed]
    [Google Scholar]
  35. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [View Article] [PubMed]
    [Google Scholar]
  36. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  37. Behrendt U, Ulrich A, Schumann P, Erler W, Burghardt J et al. A taxonomic study of bacteria isolated from grasses: A proposed new species Pseudomonas graminis sp. nov. Int J Syst Bacteriol 1999; 49 Pt 1:297–308 [View Article] [PubMed]
    [Google Scholar]
  38. Ryu E. On the Gram-differentiation of bacteria by the simplest method. J Jpn Soc Vet Sci 1938; 17:205–207 [View Article]
    [Google Scholar]
  39. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article] [PubMed]
    [Google Scholar]
  40. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  41. Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  42. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  43. Tindall BJ, Sikorski J, Smibert RA, Krieg N. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology 2007 pp 330–393
    [Google Scholar]
  44. Schumann P, Kalensee F, Cao J, Criscuolo A, Clermont D et al. Reclassification of Haloactinobacterium glacieicola as Occultella glacieicola gen. nov., comb. nov., of Haloactinobacterium album as Ruania alba comb. nov, with an emended description of the genus Ruania, recognition that the genus names Haloactinobacterium and Ruania are heterotypic synonyms and description of Occultella aeris sp. nov., a halotolerant isolate from surface soil sampled at an ancient copper smelter. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  45. Wang F, Gong X-F, Meng D, Liu Y-L, Gu P-F et al. Paracoccus binzhouensis sp. nov., isolated from activated sludge. Arch Microbiol 2021; 203:3007–3013 [View Article]
    [Google Scholar]
  46. Katayama Y, Hiraishi A, Kuraishi H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology (Reading) 1995; 141 (Pt 6):1469–1477 [View Article] [PubMed]
    [Google Scholar]
  47. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  48. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  49. Zumft WG. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 1997; 61:533–616 [View Article] [PubMed]
    [Google Scholar]
  50. Kolb S. Aerobic methanol-oxidizing bacteria in soil. FEMS Microbiol Lett 2009; 300:1–10 [View Article] [PubMed]
    [Google Scholar]
  51. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME. The expanding world of methylotrophic metabolism. Annu Rev Microbiol 2009; 63:477–499 [View Article]
    [Google Scholar]
  52. Chistoserdova L, Kalyuzhnaya MG. Current trends in methylotrophy. Trends Microbiol 2018; 26:703–714 [View Article]
    [Google Scholar]
  53. Anthony C, Ghosh M. The structure and function of the PQQ-containing quinoprotein dehydrogenases. Prog Biophys Mol Biol 1998; 69:1–21 [View Article]
    [Google Scholar]
  54. Arfman N, Hektor HJ, Bystrykh LV, Govorukhina NI, Dijkhuizen L et al. Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus . Eur J Biochem 1997; 244:426–433 [View Article]
    [Google Scholar]
  55. van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M. The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta 2006; 1763:1453–1462 [View Article]
    [Google Scholar]
  56. Anthony C. The Biochemistry of Methylotrophs London: Academic Press Inc; 1982
    [Google Scholar]
  57. Chistoserdova L, Gomelsky L, Vorholt JA, Gomelsky M, Tsygankov YD et al. Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiology 2000; 146:233–238 [View Article]
    [Google Scholar]
  58. Vorholt JA. Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 2002; 178:239–249 [View Article] [PubMed]
    [Google Scholar]
  59. Barber RD, Donohue TJ. Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 1998; 37:530–537 [View Article]
    [Google Scholar]
  60. Ras J, Van Ophem PW, Reijnders WN, Van Spanning RJ, Duine JA et al. Isolation, sequencing, and mutagenesis of the gene encoding NAD- and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J Bacteriol 1995; 177:247–251 [View Article] [PubMed]
    [Google Scholar]
  61. Goenrich M, Bartoschek S, Hagemeier CH, Griesinger C, Vorholt JA. A glutathione-dependent formaldehyde-activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via two-dimensional proton exchange NMR spectroscopy. J Biol Chem 2002; 277:3069–3072 [View Article] [PubMed]
    [Google Scholar]
  62. Latypova E, Yang S, Wang Y-S, Wang T, Chavkin TA et al. Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5. Mol Microbiol 2010; 75:426–439 [View Article] [PubMed]
    [Google Scholar]
  63. Levering PR, van Dijken JP, Veenhius M, Harder W. Arthrobacter P1, a fast growing versatile methylotroph with amine oxidase as a key enzyme in the metabolism of methylated amines. Arch Microbiol 1981; 129:72–80 [View Article] [PubMed]
    [Google Scholar]
  64. Lidstrom ME. Aerobic methylotrophic prokaryotes. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. eds The Prokaryotes: Volume 2: Ecophysiology and Biochemistry New York, NY: Springer New York; 2006 pp 618–634
    [Google Scholar]
  65. Gak ER, Tsygankov YD, Chistoserdov AY. Organization of methylamine utilization genes (mau) in ‘Methylobacillus flagellatum’ KT and analysis of mau mutants. Microbiology (Reading) 1997; 143 (Pt 6):1827–1835 [View Article]
    [Google Scholar]
  66. Graichen ME, Jones LH, Sharma BV, van Spanning RJ, Hosler JP et al. Heterologous expression of correctly assembled methylamine dehydrogenase in Rhodobacter sphaeroides . . J Bacteriol 1999; 181:4216–4222 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005581
Loading
/content/journal/ijsem/10.1099/ijsem.0.005581
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error