1887

Abstract

Four mesophilic actinobacteria (HY002, HY442, HY366 and HY285) isolated from the faeces of bats collected in southern China were found to be strictly aerobic, non-motile, rod-shaped, oxidase-negative, Gram-stain-positive and catalase-positive. Strains HY002 and HY366 contained -diaminopimelic acid as the diagnostic diamino acid and MK-9(H) the sole respiratory quinone. Arabinose, galactose and ribose were detected in the whole-cell hydrolysates of both type strains. The main cellular fatty acids (> 10.0%) of all strains were C, C 9, 10-methyl-C and summed feature 3. Strains HY002 and HY366 contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidyl inositol mannosides as the major polar lipids. The phylogenetic/phylogenomic analyses based on 16S rRNA gene and genomic sequence comparison revealed that the four strains belong to the genus , most closely related to NRRL B-59395(98.2–98.3% sequence similarity) on the EzBioCloud database. The G+C contents of strains HY002 and HY366 based on genomic DNA were 66.5 and 66.9%, respectively. The DNA–DNA relatedness values between the two types strains and members of the genus were far below 70 % (18.6–23.1 %). All genotypic and phenotypic data indicated that the four strains are representatives of two novel separate species, for which the names sp. nov. and sp. nov. are proposed, with HY002 (=CGMCC 4 7757=JCM 34 878) and HY366 (=CGMCC 1 19146=JCM 34 879) as the respective type strains.

Funding
This study was supported by the:
  • Research Units of Discovery of Unknown Bacteria and Function (Award 2018RU010)
    • Principle Award Recipient: JianguoXu
  • National Key R&D Program of China (Award 2019YFC1200505)
    • Principle Award Recipient: NotApplicable
  • National Key R&D Program of China (Award 2019YFC1200501)
    • Principle Award Recipient: JingYang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005579
2022-10-21
2024-05-05
Loading full text...

Full text loading...

References

  1. Tsukamura M. Proposal of a new genus, Gordona, for slightly acid-fast organisms occurring in sputa of patients with pulmonary disease and in soil. J Gen Microbiol 1971; 68:15–26 [View Article] [PubMed]
    [Google Scholar]
  2. Kageyama A, Iida S, Yazawa K, Kudo T, Suzuki S-I et al. Gordonia araii sp. nov. and Gordonia effusa sp. nov., isolated from patients in Japan. Int J Syst Evol Microbiol 2006; 56:1817–1821 [View Article]
    [Google Scholar]
  3. Iida S, Taniguchi H, Kageyama A, Yazawa K, Chibana H et al. Gordonia otitidis sp. nov., isolated from a patient with external otitis. Int J Syst Evol Microbiol 2005; 55:1871–1876 [View Article] [PubMed]
    [Google Scholar]
  4. Tsang C-C, Xiong L, Poon RWS, Chen JHK, Leung K-W et al. Gordonia hongkongensis sp. nov., isolated from blood culture and peritoneal dialysis effluent of patients in Hong Kong. Int J Syst Evol Microbiol 2016; 66:3942–3950 [View Article] [PubMed]
    [Google Scholar]
  5. Kang Y-Q, Ming H, Gonoi T, Chen Y, Cao Y et al. Gordonia iterans sp. nov., isolated from a patient with pneumonia. Int J Syst Evol Microbiol 2014; 64:3520–3525 [View Article] [PubMed]
    [Google Scholar]
  6. Park S, Kang SJ, Kim W, Yoon JH. Gordonia hankookensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59:3172–3175 [View Article] [PubMed]
    [Google Scholar]
  7. Shen F-T, Goodfellow M, Jones AL, Chen Y-P, Arun AB et al. Gordonia soli sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 2006; 56:2597–2601 [View Article] [PubMed]
    [Google Scholar]
  8. Zhang G, Huang Y, Yang J, Lai X-H, Jin D et al. Gordonia jinghuaiqii sp. nov. and Gordonia zhaorongruii sp. nov., isolated from Tibetan Plateau wildlife. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  9. Kim KK, Lee KC, Klenk HP, Oh HM, Lee JS. Gordonia kroppenstedtii sp. nov., a phenol-degrading actinomycete isolated from a polluted stream. Int J Syst Evol Microbiol 2009; 59:1992–1996 [View Article] [PubMed]
    [Google Scholar]
  10. Sangkanu S, Suriyachadkun C, Phongpaichit S. Gordonia sediminis sp. nov., an actinomycete isolated from mangrove sediment. Int J Syst Evol Microbiol 2019; 69:1814–1820 [View Article] [PubMed]
    [Google Scholar]
  11. Jin D, Kong X, Jia M, Yu X, Wang X et al. Gordonia phthalatica sp. nov., a di-n-butyl phthalate-degrading bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2017; 67:5128–5133 [View Article] [PubMed]
    [Google Scholar]
  12. Andalibi F, Fatahi-Bafghi M. Gordonia: isolation and identification in clinical samples and role in biotechnology. Folia Microbiol 2017; 62:245–252 [View Article]
    [Google Scholar]
  13. Linos A, Steinbüchel A, Spröer C, Kroppenstedt RM. Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int J Syst Bacteriol 1999; 49 Pt 4:1785–1791 [View Article] [PubMed]
    [Google Scholar]
  14. Kim SB, Brown R, Oldfield C, Gilbert SC, Goodfellow M. Gordonia desulfuricans sp. nov., a benzothiophene-desulphurizing actinomycete. Int J Syst Bacteriol 1999; 49 Pt 4:1845–1851 [View Article] [PubMed]
    [Google Scholar]
  15. Arenskötter M, Bröker D, Steinbüchel A. Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 2004; 70:3195–3204 [View Article] [PubMed]
    [Google Scholar]
  16. Liu Y, Ge F, Chen G, Li W, Ma P et al. Gordonia neofelifaecis sp. nov., a cholesterol side-chain-cleaving actinomycete isolated from the faeces of Neofelis nebulosa. Int J Syst Evol Microbiol 2011; 61:165–169 [View Article] [PubMed]
    [Google Scholar]
  17. Ge F, Li W, Chen G, Liu Y, Zhang G et al. Draft genome sequence of Gordonia neofelifaecis NRRL B-59395, a cholesterol-degrading actinomycete. J Bacteriol 2011; 193:5045–5046 [View Article] [PubMed]
    [Google Scholar]
  18. Huang Y, Wang X, Yang J, Lu S, Lai X-H et al. Nocardioides yefusunii sp. nov., isolated from Equus kiang (Tibetan wild ass) faeces. Int J Syst Evol Microbiol 2019; 69:3629–3635 [View Article]
    [Google Scholar]
  19. Huang Y, Yang J, Lu S, Lai X-H, Jin D et al. Morphological and genomic characteristics of two novel halotolerant actinomycetes, Tomitella gaofuii sp. nov. and Tomitella fengzijianii sp. nov. isolated from bat faeces. Syst Appl Microbiol 2022; 45:126294 [View Article]
    [Google Scholar]
  20. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996; 46:1088–1092 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  25. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  27. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  28. Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 2015; 33:623–630 [View Article] [PubMed]
    [Google Scholar]
  29. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  30. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid Annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  31. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  32. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  33. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  34. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  36. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  37. Siani A, Pagano E, Iacone R, Iacoviello L, Scopacasa F et al. Blood pressure and metabolic changes during dietary L-arginine supplementation in humans. Am J Hypertens 2000; 13:547–551 [View Article] [PubMed]
    [Google Scholar]
  38. Melik Z, Zaletel P, Virtic T, Cankar K. L-arginine as dietary supplement for improving microvascular function. Clin Hemorheol Microcirc 2017; 65:205–217 [View Article] [PubMed]
    [Google Scholar]
  39. Sagawa CHD, Assis R de A, Zaini PA, Saxe H, Wilmarth PA et al. De novo arginine synthesis is required for full virulence of Xanthomonas arboricola pv. juglandis during walnut bacterial blight disease. Phytopathol 2022; 112:1500–1512 [View Article]
    [Google Scholar]
  40. Wang X, Yang J, Lu S, Lai X-H, Jin D et al. Nocardioides houyundeii sp. nov., isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2018; 68:3874–3880 [View Article] [PubMed]
    [Google Scholar]
  41. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  42. Sasser M. Technical note 101: Identification of bacteria by gas chromatography of cellular fatty acids. MIDI; 1990
  43. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  44. Harper JJ, Davis GHG. Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Evol Microbiol 1979; 29:56–58 [View Article]
    [Google Scholar]
  45. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  46. Komagata K, Suzuki KI. 4 lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1988; 161–207:
    [Google Scholar]
  47. Kämpfer P, Young C-C, Chu J-N, Frischmann A, Busse H-J et al. Gordonia humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:65–70 [View Article] [PubMed]
    [Google Scholar]
  48. Luo H, Gu Q, Xie J, Hu C, Liu Z et al. Gordonia shandongensis sp. nov., isolated from soil in China. Int J Syst Evol Microbiol 2007; 57:605–608 [View Article] [PubMed]
    [Google Scholar]
  49. Yassin AF, Shen F-T, Hupfer H, Arun AB, Lai W-A et al. Gordonia malaquae sp. nov., isolated from sludge of a wastewater treatment plant. Int J Syst Evol Microbiol 2007; 57:1065–1068 [View Article] [PubMed]
    [Google Scholar]
  50. Tamura T, Saito S, Hamada M, Kang Y, Hoshino Y et al. Gordonia crocea sp. nov. and Gordonia spumicola sp. nov. isolated from sludge of a wastewater treatment plant. Int J Syst Evol Microbiol 2020; 70:3718–3723 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005579
Loading
/content/journal/ijsem/10.1099/ijsem.0.005579
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error