1887

Abstract

A novel cellulose-degrading actinobacterium, designated strain NEAU-S10, was isolated from soil collected from Chifeng, Inner Mongolia Autonomous Region, PR China, and characterized using a polyphasic approach. Pairwise similarity of the 16S rRNA gene sequence showed that strain NEAU-S10 was a representative of and was closely related to NEAU-yn17 (99.2 %), SA152 (99.0 %), DSM 44231 (98.5 %) and NBRC 101911 (98.5 %). Physiological and chemotaxonomic characteristics of the strain further supported its affiliation to the genus . The whole-cell sugars contained galactose, ribose and mannose. The polar lipids contained diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The predominant menaquinones were MK-9(H), MK-9(H), MK-9(H) and MK-10(H). The major fatty acids were iso-C, C, anteiso-C, iso-C and iso-C. The genomic DNA G+C content was 71.8 mol%. The levels of digital DNA–DNA hybridization between isolate and NEAU-yn17, SA152 and DSM 44231 were 40.1 % (37.6–42.6 %), 38.soap8 % (36.3–41.3 %) and 44.8 % (42.2–47.3 %) and the ANI values between them were determined to be 90.2, 89.8 and 91.7 %, the results indicated that strain NEAU-S10 could be distinguished from its reference strains. The assembled genome sequence of strain NEAU-S10 was found to be 10 305 394 bp long. The NCBI Prokaryotic Genome Annotation Pipeline (PGAP) revealed 8 994 protein-coding genes. Genomic analysis and Congo red staining test indicated that strain NEAU-S10 had the potential to degrade cellulose. The genomic and phenotypic results indicate that strain NEAU-S10 represents a novel species of the genus , for which the name sp. nov. is proposed, with NEAU-S10 (=CCTCC AA 2020037=JCM 34800) as the type strain.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 32030090)
    • Principle Award Recipient: WenshengXiang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005572
2022-10-20
2024-05-29
Loading full text...

Full text loading...

References

  1. Labeda DP, Testa RT, Lechevalier MP, Lechevalier HA. Saccharothrix: a new genus of the Actinomycetales related to Nocardiopsis. Int J Syst Bacteriol 1984; 34:426–431 [View Article]
    [Google Scholar]
  2. Li YQ, Liu L, Cheng C, Shi XH, Lu CY et al. Saccharothrix lopnurensis sp. nov., a filamentous actinomycete isolated from sediment of Lop Nur. Antonie van Leeuwenhoek 2015; 108:975–981 [View Article]
    [Google Scholar]
  3. Bing Lin Y, Qing Guo Y, Hui Di X, Chun Fan M, Hong Dong D et al. Saccharothrix stipae sp. nov., an actinomycete isolated from the rhizosphere of Stipa grandis. Int J Syst Evol Microbiol 2016; 66:1017–1021 [View Article] [PubMed]
    [Google Scholar]
  4. Yan X, Huang LL, Tu X, Gao XN, Kang ZS. Saccharothrix yanglingensis sp. nov., an antagonistic endophytic actinomycete isolated from cucumber plant. Antonie van Leeuwenhoek 2012; 101:141–146 [View Article]
    [Google Scholar]
  5. Hu YT, Zhou PJ, Zhou YG, Liu ZH, Liu SJ. Saccharothrix xinjiangensis sp. nov., a pyrene-degrading actinomycete isolated from Tianchi Lake, Xinjiang, China. Int J Syst Evol Microbiol 2004; 54:2091–2094 [View Article]
    [Google Scholar]
  6. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic Names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  7. Liu J, Sun Y, Liu J, Wu Y, Cao C et al. Saccharothrix deserti sp. nov., an actinomycete isolated from desert soil. Int J Syst Evol Microbiol 2020; 70:1882–1887 [View Article] [PubMed]
    [Google Scholar]
  8. Bouras N, Merrouche R, Lamari L, Mathieu F, Sabaou N et al. Precursor-directed biosynthesis of new dithiolopyrrolone analogs by Saccharothrix algeriensis NRRL B-24137. Process Biochem 2008; 43:1244–1252 [View Article]
    [Google Scholar]
  9. Takehana Y, Muramatsu H, Umekita M, Hayashi C, Kimura T et al. Saccharobipyrimicin, a new antibiotic from the leaf-litter actinomycete Saccharothrix sp. MM696L-181F4. J Antibiot 2021; 74:470–473 [View Article]
    [Google Scholar]
  10. Kuranaga T, Tamura M, Ikeda H, Terada S, Nakagawa Y et al. Identification and total synthesis of an unstable anticancer macrolide presaccharothriolide Z produced by Saccharothrix sp. A1506. Org Lett 2021; 23:7106–7111 [View Article]
    [Google Scholar]
  11. Labeda DP, Lechevalier MP. Amendment of the genus Saccharothrix labeda et al. 1984 and descriptions of Saccharothrix espanaensis sp. nov., Saccharothrix cryophilis sp. nov., and Saccharothrix mutabilis comb. nov. Int J Syst Bacteriol 1989; 39:420–423 [View Article]
    [Google Scholar]
  12. Labeda DP, Kroppenstedt RM. Phylogenetic analysis of Saccharothrix and related taxa: proposal for Actinosynnemataceae fam. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:331–336 [View Article] [PubMed]
    [Google Scholar]
  13. Piao C, Zheng W, Li Y, Liu C, Jin L et al. Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. isolated from the cuticle of Camponotus japonicus Mayr. Arch Microbiol 2017; 199:963–970 [View Article]
    [Google Scholar]
  14. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  15. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50 Pt 6:2031–2036 [View Article] [PubMed]
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  20. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  23. Mahmoud H, Jose L, Eapen S. Grimontia sedimenti sp. nov., isolated from benthic sediments near coral reefs south of Kuwait. Int J Syst Evol Microbiol 2019; 71: [View Article] [PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  25. Nikodinovic J, Barrow KD, Chuck JA. High yield preparation of genomic DNA from Streptomyces. Biotechniques 2003; 35:932–934 [View Article]
    [Google Scholar]
  26. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article] [PubMed]
    [Google Scholar]
  27. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  29. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V et al. The carbohydrate-active enZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009; 37:D233–8 [View Article] [PubMed]
    [Google Scholar]
  30. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–9 [View Article] [PubMed]
    [Google Scholar]
  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  33. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article] [PubMed]
    [Google Scholar]
  34. Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP. Cellulase families revealed by hydrophobic cluster analysis. Gene 1989; 81:83–95 [View Article] [PubMed]
    [Google Scholar]
  35. Tietz JI, Schwalen CJ, Patel PS, Maxson T, Blair PM et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol 2017; 13:470–478 [View Article] [PubMed]
    [Google Scholar]
  36. Guan X, Liu C, Zhao J, Fang B, Zhang Y et al. Streptomyces maoxianensis sp. nov., a novel actinomycete isolated from soil in Maoxian, China. Antonie van Leeuwenhoek 2015; 107:1119–1126 [View Article] [PubMed]
    [Google Scholar]
  37. Kelly KL. Inter-Society Colour Council-National Bureau of Standards Colour-Name Charts Illustrated with Centroid Colours Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  38. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  39. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145 [View Article]
    [Google Scholar]
  40. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 2013; 103:399–408 [View Article]
    [Google Scholar]
  41. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. eds Bergey’s Manual of Systematic Bacteriology vol 4 Baltimore: Williams and Wilkins; 1989 pp 2453–2492
    [Google Scholar]
  42. Gordon RE, Barnett DA, Handerhan JE, Pang C-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  43. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993; 43:805–812 [View Article]
    [Google Scholar]
  44. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  45. Kim ES, Kim B-S, Kim K-Y, Woo H-M, Lee S-M et al. Aerobic and anaerobic cellulose utilization by Paenibacillus sp. CAA11 and enhancement of its cellulolytic ability by expressing a heterologous endoglucanase. J Biotechnol 2018; 268:21–27 [View Article] [PubMed]
    [Google Scholar]
  46. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30:178–182 [View Article] [PubMed]
    [Google Scholar]
  47. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. eds Actinomycete Taxonomy Special Publication vol 6 Arlington: Society of Industrial Microbiology; 1980 pp 227–291
    [Google Scholar]
  48. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  49. Collins MD. Chemical Methods in Bacterial Systematics. In Goodfellow M, Minnikin DE. eds Isoprenoid Quinone Analyses in Bacterial Classification and Identification London: Academic Press; 1985 pp 267–284
    [Google Scholar]
  50. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16:176–178
    [Google Scholar]
  51. Song J, Qiu S, Zhao J, Han C, Wang Y et al. Pseudonocardia tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Antonie van Leeuwenhoek 2019; 112:765–773 [View Article] [PubMed]
    [Google Scholar]
  52. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105:307–315 [View Article] [PubMed]
    [Google Scholar]
  53. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61:1165–1169 [View Article] [PubMed]
    [Google Scholar]
  54. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980; 188:221–233 [View Article]
    [Google Scholar]
  55. Boubetra D, Zitouni A, Bouras N, Mathieu F, Lebrihi A et al. Saccharothrix saharensis sp. nov., an actinomycete isolated from Algerian Saharan soil. Int J Syst Evol Microbiol 2013; 63:3744–3749 [View Article] [PubMed]
    [Google Scholar]
  56. Liu C, Guan X, Wang S, Zhao J, Wang H et al. Saccharothrix carnea sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2014; 64:4033–4037 [View Article] [PubMed]
    [Google Scholar]
  57. Labeda DP, Lyons AJ. Saccharothrix texasensis sp. nov. and Saccharothrix waywayandensis sp. nov. Int J Syst Bacteriol 1989; 39:355–358 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005572
Loading
/content/journal/ijsem/10.1099/ijsem.0.005572
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error