1887

Abstract

A Gram-negative, aerobic, rod-shaped bacterium, designated DM2-R-LB4 was isolated from L. ‘Cheungsam’ in Andong, Republic of Korea. The strain DM2-R-LB4 grew at temperatures of 15–45 °C (optimum, 30–37 °C), pH of 5.5–9 (optimum, 8.0), and 0–2 % (w/v) NaCl concentration (optimum, 0%). Phylogenetic analyses based on the 16S rRNA gene sequences revealed that strain DM2-R-LB4 is related to species of the genus , and shared 97.8 and 97.5% similarity to KCTC 42244 and DSM 4733, respectively. The DNA G+C content was 67.9 mol% and genome analysis of the strain DM2-R-LB4 revealed that the genome size was 4 386 171 bp and contained 4 009 predicted protein-coding genes. The average nucleotide identity (ANI) values between strain DM2-R-LB4 and KCTC 42244, and DSM 4733 was 76.8 and 76.7 %, respectively, while the values of digital DNA–DNA hybridization (dDDH) were 20.7 and 20.6 %, respectively. C 2-OH, C, and summed feature 8 (C ω6c and/or C ω7c) were the major fatty acids (>10 %) in the strain DM2-R-LB4. The polar lipids comprised diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), sphingoglycolipid (SGL), glycolipid (GL), phospholipid (PL), and two unidentified polar lipids (L1 and L2). Ubiquinone-10 (Q-10) was the only respiratory quinone. The polyamine pattern was found to contain homospermidine, putrescine, and spermidine. The results of phylogenetic anlayses, polyphasic studies, revealed that strain DM2-R-LB4 represents a novel species of the genus , for which the name sp. nov., is proposed. The type strain is DM2-R-LB4 (=KCTC 92075 = GDMCC 1.3018).

Funding
This study was supported by the:
  • Korea Research Institute of Bioscience and Biotechnology (Award KGM5382212)
    • Principle Award Recipient: Cheol JeongJae
  • the Basic Science Research Program through the National Research Foundation of Korea (NRF) (Award 2020R111A2072308)
    • Principle Award Recipient: LeeJiyoung
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005566
2022-10-19
2024-05-18
Loading full text...

Full text loading...

References

  1. Piluzza G, Delogu G, Cabras A, Marceddu S, Bullitta S. Differentiation between fiber and drug types of hemp (Cannabis sativa L.) from a collection of wild and domesticated accessions. Genet Resour Crop Evol 2013; 60:2331–2342 [View Article]
    [Google Scholar]
  2. Andre CM, Hausman J-F, Guerriero G. Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci 2016; 7:19 [View Article]
    [Google Scholar]
  3. Flores-Sanchez IJ, Verpoorte R. Secondary metabolism in cannabis. Phytochem Rev 2013; 7:615–639 [View Article]
    [Google Scholar]
  4. Schafhauser T, Jahn L, Kirchner N, Kulik A, Flor L et al. Antitumor astins originate from the fungal endophyte Cyanodermella asteris living within the medicinal plant Aster tataricus. Proc Natl Acad Sci U S A 2019; 116:26909–26917 [View Article] [PubMed]
    [Google Scholar]
  5. Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993; 260:214–216 [View Article] [PubMed]
    [Google Scholar]
  6. Venugopalan A, Srivastava S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 2015; 33:873–887 [View Article] [PubMed]
    [Google Scholar]
  7. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002; 52:1485–1496 [View Article] [PubMed]
    [Google Scholar]
  8. Holmes B, Owen RJ, Evans A, Malnick H, Willcox WR. Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int J Syst Bacteriol 1977; 27:133–146 [View Article]
    [Google Scholar]
  9. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article]
    [Google Scholar]
  10. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR et al. Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 2001; 51:1491–1498 [View Article]
    [Google Scholar]
  11. Sheu S-Y, Chen Y-L, Chen W-M. Sphingomonas fonticola sp. nov., isolated from spring water. Int J Syst Evol Microbiol 2015; 65:4495–4502 [View Article] [PubMed]
    [Google Scholar]
  12. An H, Xu M, Dai J, Wang Y, Cai F et al. Sphingomonas xinjiangensis sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 2011; 61:1865–1869 [View Article] [PubMed]
    [Google Scholar]
  13. Kang M, Chhetri G, Kim J, Kim I, Seo T. Sphingomonas sabuli sp. nov., a carotenoid-producing bacterium isolated from beach sand. Int J Syst Evol Microbiol 2021; 71:004896 [View Article]
    [Google Scholar]
  14. Chung EJ, Jo EJ, Yoon HS, Song GC, Jeon CO et al. Sphingomonas oryziterrae sp. nov. and Sphingomonas jinjuensis sp. nov. isolated from rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Microbiol 2011; 61:2389–2394 [View Article] [PubMed]
    [Google Scholar]
  15. Singh P, Kim Y-J, Hoang V-A, Farh M-A, Yang D-C. Sphingomonas panacis sp. nov., isolated from rhizosphere of rusty ginseng. Antonie van Leeuwenhoek 2015; 108:711–720 [View Article] [PubMed]
    [Google Scholar]
  16. Kim S-J, Moon J-Y, Lim J-M, Ahn J-H, Weon H-Y et al. Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 2014; 64:926–932 [View Article] [PubMed]
    [Google Scholar]
  17. Lee Y, Jeon CO. Sphingomonas frigidaeris sp. nov., isolated from an air conditioning system. Int J Syst Evol Microbiol 2017; 67:3907–3912 [View Article] [PubMed]
    [Google Scholar]
  18. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematic New York, NY: John Willey & Sons, Inc; 1991 pp 115–175
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  22. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  23. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article] [PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  25. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001; Chapter 2:Unit [View Article]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  30. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  31. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  32. Sasser M. Bacterial Identification by Gas Chromatograghic Analysis of Fatty Acids Methyl EstersBacterial identification by gas chromatograghic analysis of fatty acids methyl esters. (GC-FAME) MIDI Technical Notetechnical note 101 Newark, DE: MIDI inc; 2006
    [Google Scholar]
  33. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 1981; 51:129–134 [View Article] [PubMed]
    [Google Scholar]
  34. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  35. Jiang L, Jeon D, Kim J, Lee CW, Peng Y et al. Pyomelanin-producing Brevundimonas vitisensis sp. nov., isolated from grape (Vitis vinifera L.). Front Microbiol 2021; 12:3099 [View Article]
    [Google Scholar]
  36. Minnikin D, Collins M, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95
    [Google Scholar]
  37. Son H-M, Kook M, Tran HTH, Kim K-Y, Park S-Y et al. Sphingomonas kyeonggiense sp. nov., isolated from soil of a ginseng field. Antonie van Leeuwenhoek 2014; 105:791–797 [View Article] [PubMed]
    [Google Scholar]
  38. Chen H, Jogler M, Rohde M, Klenk H-P, Busse H-J et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012; 62:2835–2843 [View Article] [PubMed]
    [Google Scholar]
  39. Busse H-J, Kämpfer P, Denner EBM. Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 1999; 23:242–251 [View Article] [PubMed]
    [Google Scholar]
  40. Abraham W-R, Estrela AB, Rohde M, Smit J, Vancanneyt M. Prosthecate sphingomonads: proposal of Sphingomonas canadensis sp. nov. Int J Syst Evol Microbiol 2013; 63:3214–3219 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005566
Loading
/content/journal/ijsem/10.1099/ijsem.0.005566
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error