1887

Abstract

Two bacterial strains, designated KIS38-8 and F39-2, were isolated from a mountain soil sample and a black locust flower () in Republic of Korea, respectively. The phylogenetic tree based on 16S rRNA gene sequences showed that strain KIS38-8 was classified into the genus with the highest sequence similarity to HU1-HG42 (96.6 %), and strain F39-2 was grouped into the genus with the highest sequence similarity to Jip 10 (97.6 %). Orthologous average nucleotide identity and digital DNA–DNA hybridization values between strain KIS38-8 and closely related strains were less than 72 and 19 %, respectively, while those values between strain F39-2 and closely related strains were less than 73 and 21 %, respectively. The DNA G+C contents of strain KIS38-8 and F39-2 were 36.4 and 41.4 mol%, respectively. On the basis of the phenotypic and genotypic evidence, strains KIS38-8 and F39-2 are considered to represent novel species of the genus and , respectively, for which the names sp. nov. (type strain KIS38-8=KACC 17328=NBRC 113101) and sp. nov. (type strain F39-2=KACC 19733=JCM 33062) have been proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005556
2022-09-22
2024-05-02
Loading full text...

Full text loading...

References

  1. Lim JH, Baek SH, Lee ST. Ferruginibacter alkalilentus gen. nov., sp. nov. and Ferruginibacter lapsinanis sp. nov., novel members of the family “Chitinophagaceae” in the phylum bacteroidetes, isolated from freshwater sediment. Int J Syst Evol Microbiol 2009; 59:2394–2399 [View Article]
    [Google Scholar]
  2. Kang H, Kim H, Joung Y, Jang TY, Joh K. Ferruginibacter paludis sp. nov., isolated from wetland freshwater, and emended descriptions of Ferruginibacter lapsinanis and Ferruginibacter alkalilentus. Int J Syst Evol Microbiol 2015; 65:2635–2639 [View Article]
    [Google Scholar]
  3. Lee BI, Kang H, Kim H, Joung Y, Joh K. Ferruginibacter yonginensis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2014; 64:846–850 [View Article]
    [Google Scholar]
  4. Jin L, Lee H-G, La H-J, Ko S-R, Ahn C-Y et al. Ferruginibacter profundus sp. nov., a novel member of the family Chitinophagaceae, isolated from freshwater sediment of a reservoir. Antonie van Leeuwenhoek 2014; 106:319–323 [View Article] [PubMed]
    [Google Scholar]
  5. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007; 57:2349–2354 [View Article]
    [Google Scholar]
  6. Urai M, Aizawa T, Nakagawa Y, Nakajima M, Sunairi M. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 2008; 58:2046–2050 [View Article] [PubMed]
    [Google Scholar]
  7. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2010; 60:134–139 [View Article] [PubMed]
    [Google Scholar]
  8. Chen XY, Zhao R, Tian Y, Kong BH, Li XD et al. Mucilaginibacter polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2014; 64:1395–1400 [View Article]
    [Google Scholar]
  9. An D-S, Yin C-R, Lee S-T, Cho C-H. Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. Int J Syst Evol Microbiol 2009; 59:1122–1125 [View Article] [PubMed]
    [Google Scholar]
  10. Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. Mucilaginibacter auburnensis sp. nov., isolated from a plant stem. Int J Syst Evol Microbiol 2014; 64:1736–1742 [View Article] [PubMed]
    [Google Scholar]
  11. Aydogan EL, Busse H-J, Moser G, Müller C, Kämpfer P et al. Proposal of Mucilaginibacter galii sp. nov. isolated from leaves of Galium album. Int J Syst Evol Microbiol 2017; 67:1318–1326 [View Article]
    [Google Scholar]
  12. Zhang Z, Sun F, Chen Y, Yao L, Chen Z et al. Mucilaginibacter endophyticus sp. nov., an endophytic polysaccharide-producing bacterium isolated from a stem of Miscanthus sinensis. Antonie van Leeuwenhoek 2019; 112:1087–1094 [View Article] [PubMed]
    [Google Scholar]
  13. Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans ADL. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 1997; 143(Pt 9):2983–2989 [View Article]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  15. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  21. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  22. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  23. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  24. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  26. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems echnology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article]
    [Google Scholar]
  27. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  29. Ma Q, Zhang X, Qu Y. Biodegradation and biotransformation of indole: advances and perspectives. Front Microbiol 2018; 9:2625 [View Article]
    [Google Scholar]
  30. Xiao X, Guo H, Ma F, You S, Geng M et al. Biological mechanism of alleviating membrane biofouling by porous spherical carriers in a submerged membrane bioreactor. Sci Total Environ 2021; 792:148448 [View Article] [PubMed]
    [Google Scholar]
  31. Oh S, Choi D, Cha CJ. Ecological processes underpinning microbial community structure during exposure to subinhibitory level of triclosan. Sci Rep 2019; 9:4598 [View Article]
    [Google Scholar]
  32. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  33. Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci 2019; 28:1947–1951 [View Article] [PubMed]
    [Google Scholar]
  34. Aruldass CA, Dufossé L, Ahmad WA. Current perspective of yellowish-orange pigments from microorganisms–a review. J Cleaner Production 2018; 180:168–182 [View Article]
    [Google Scholar]
  35. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  36. Wang ZY, Wang RX, Zhou JS, Cheng JF, Li YH. An assessment of the genomics, comparative genomics and cellulose degradation potential of Mucilaginibacter polytrichastri strain RG4-7. Bioresour Technol 2020; 297:122389 [View Article] [PubMed]
    [Google Scholar]
  37. Sasser M. Technical note 101: Identification of bacteria by gas chromatography of cellular fatty acids. MIDI; 1990
  38. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  39. Hamada M, Yamamura H, Komukai C, Tamura T, Suzuki K et al. Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot 2012; 65:427–431 [View Article]
    [Google Scholar]
  40. Kang H, Kim H, Joung Y, Jang TY, Joh K. Ferruginibacter paludis sp. nov., isolated from wetland freshwater, and emended descriptions of Ferruginibacter lapsinanis and Ferruginibacter alkalilentus. Int J Syst Evol Microbiol 2015; 65:2635–2639 [View Article] [PubMed]
    [Google Scholar]
  41. Sedláček I, Pantůček R, Králová S, Mašlaňová I, Holochová P et al. Mucilaginibacter terrae sp. nov., isolated from Antarctic soil. Int J Syst Evol Microbiol 2017; 67:4002–4007 [View Article] [PubMed]
    [Google Scholar]
  42. Kang H, Kim H, Bae S. Mucilaginibacter aquatilis sp. nov., Mucilaginibacter arboris sp. nov., and Mucilaginibacter ginkgonis sp. nov., novel bacteria isolated from freshwater and tree bark. Int J Syst Evol Microbiol 2021; 71:004755
    [Google Scholar]
  43. Khan H, Chung EJ, Kang DY, Jeon CO, Chung YR. Mucilaginibacter jinjuensis sp. nov., with xylan-degrading activity. Int J Syst Evol Microbiol 2013; 63:1267–1272 [View Article]
    [Google Scholar]
  44. Park CS, Han K, Ahn TY. Mucilaginibacter koreensis sp. nov., isolated from leaf mould. Int J Syst Evol Microbiol 2014; 64:2274–2279 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005556
Loading
/content/journal/ijsem/10.1099/ijsem.0.005556
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error