1887

Abstract

An anaerobic, hydrogenotrophic methane-producing archaeon was isolated from an alkaline thermal spring (42 °C, pH 9.0) in New Caledonia. This methanogen, designated strain CAN, is alkaliphilic, thermotolerant, with Gram-positive staining non-motile cells. Strain CAN grows autotrophically using hydrogen exclusively as an energy source and carbon dioxide as the sole carbon source (without the requirement of yeast extract or other organic compounds). It grows at 20–45 °C (optimum, 45 °C) and pH 7.3–9.7 (optimum, pH 9.0). NaCl is not required for growth (optimum 0 %) but is tolerated up to 1.5 %. It resists novobiocin, streptomycin and vancomycin but is inhibited by ampicillin and penicillin, among other antibiotics. The genome consists of a circular chromosome (2.2 Mb) containing 2126 predicted protein-encoding genes with a G+C content of 36.4 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CAN is a member of the genus , most closely related to the alkaliphilic WeN4 with 98.5 % 16S rRNA gene sequence identity. The genomes of strain CAN and DSM 3459, sequenced in this study, share 71.6 % average nucleotide identity and 14.0 % digital DNA–DNA hybridization. Therefore, phylogenetic and physiological results indicate that strain CAN represents a novel species, for which the name sp. nov. is proposed, and strain CAN (=DSM 102889= JCM 31304) is assigned as the type strain.

Funding
This study was supported by the:
  • Institut de Recherche pour le Développement
    • Principle Award Recipient: MarianneQuéméneur
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005554
2022-10-19
2024-05-05
Loading full text...

Full text loading...

References

  1. Lyu Z, Shao N, Akinyemi T, Whitman WB. Methanogenesis. Curr Biol 2018; 28:R727–R732 [View Article] [PubMed]
    [Google Scholar]
  2. Garcia J-L, Patel BK, Ollivier B. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 2000; 6:205–226 [View Article] [PubMed]
    [Google Scholar]
  3. Boone DR. Methanobacterium Bergey’s manual of systematics of archaea and bacteria; 2015 pp 1–8
    [Google Scholar]
  4. Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Davín AA et al. A standardized archaeal taxonomy for the genome taxonomy database. Nat Microbiol 2021; 6:946–959 [View Article] [PubMed]
    [Google Scholar]
  5. Kotelnikova S, Macario AJ, Pedersen K. Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 1998; 48 Pt 2:357–367 [View Article] [PubMed]
    [Google Scholar]
  6. Shlimon AG, Friedrich MW, Niemann H, Ramsing NB, Finster K. Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int J Syst Evol Microbiol 2004; 54:759–763 [View Article] [PubMed]
    [Google Scholar]
  7. Zhu J, Liu X, Dong X. Methanobacterium movens sp. nov. and Methanobacterium flexile sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2011; 61:2974–2978 [View Article] [PubMed]
    [Google Scholar]
  8. Worakit S, Boone DR, Mah RA, Abdel-samie M-E, El-halwagi MM. Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int J Syst Bacteriol 1986; 36:380–382 [View Article]
    [Google Scholar]
  9. Maurizot P, Sevin B, Lesimple S, Collot J, Jeanpert J et al. Chapter 9 mineral resources and prospectivity of non-ultramafic rocks of New Caledonia. Memoirs 1986; 51:215–245 [View Article]
    [Google Scholar]
  10. Cox ME, Launay J, Paris J. eds Geochemistry of low temperature geothermal systems in New Caledonia. Pacific Geothermal conference and 4th NZ Geothermal Workshop 1982
    [Google Scholar]
  11. Quéméneur M, Mei N, Monnin C, Postec A, Wils L et al. Procaryotic diversity and hydrogenotrophic methanogenesis in an alkaline spring (La Crouen, New Caledonia). Microorganisms 2021; 9:1360 [View Article] [PubMed]
    [Google Scholar]
  12. Deville E, Prinzhofer A. The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: a major and noble gases study of fluid seepages in New Caledonia. Chemical Geology 2016; 440:139–147 [View Article]
    [Google Scholar]
  13. Quéméneur M, Erauso G, Bartoli M, Vandecasteele C, Wils L et al. Alkalicella caledoniensis gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from “La Crouen” alkaline thermal spring, New Caledonia. Int J Syst Evol Microbiol 2021; 71:004810 [View Article]
    [Google Scholar]
  14. Widdel F, Kohring G-W, Mayer F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch Microbiol 2016; 134:286–294 [View Article]
    [Google Scholar]
  15. Hungate R. Methods in microbiology. A Roll Tube Method for Cultivation of Strict Anaerobes New York: Academic Press; 1969 pp 117–132
    [Google Scholar]
  16. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260–296 [View Article]
    [Google Scholar]
  17. Mei N, Zergane N, Postec A, Erauso G, Ollier A et al. Fermentative hydrogen production by a new alkaliphilic Clostridium sp. (strain PROH2) isolated from a shallow submarine hydrothermal chimney in Prony Bay, New Caledonia. Int J Hydrogen Energy 2014; 39:19465–19473 [View Article]
    [Google Scholar]
  18. Quéméneur M, Erauso G, Frouin E, Zeghal E, Vandecasteele C et al. Hydrostatic pressure helps to cultivate an original anaerobic bacterium from the atlantis massif subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Front Microbiol 2019; 10:1497 [View Article]
    [Google Scholar]
  19. Quéméneur M, Palvadeau A, Postec A, Monnin C, Chavagnac V et al. Endolithic microbial communities in carbonate precipitates from serpentinite-hosted hyperalkaline springs of the Voltri Massif (Ligurian Alps, Northern Italy). Environ Sci Pollut Res Int 2015; 22:13613–13624 [View Article]
    [Google Scholar]
  20. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 1993; 59:695–700 [View Article]
    [Google Scholar]
  21. Grosskopf R, Janssen PH, Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 1998; 64:960–969 [View Article] [PubMed]
    [Google Scholar]
  22. Nicol GW, Leininger S, Schleper C, Prosser JI. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 2008; 10:2966–2978 [View Article] [PubMed]
    [Google Scholar]
  23. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  25. Felsenstein J. Phylogenies from restriction sites: a maximum-likelihood approach. Evolution 1992; 46:159–173 [View Article] [PubMed]
    [Google Scholar]
  26. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  28. Marteinsson V, Birrien J-L, Kristjánsson JK, Prieur D. First isolation of thermophilic aerobic non-sporulating heterotrophic bacteria from deep-sea hydrothermal vents. FEMS Microbiol Ecol 1971; 18:163–174 [View Article]
    [Google Scholar]
  29. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  30. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  31. Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S et al. MicroScope–an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 2013; 41:D636–47 [View Article]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:1–10 [View Article] [PubMed]
    [Google Scholar]
  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  35. Mochimaru H, Uchiyama H, Yoshioka H, Imachi H, Hoaki T et al. Methanogen diversity in deep subsurface gas-associated water at the Minami-Kanto gas field in Japan. Geomicrobiol J 2007; 24:93–100 [View Article]
    [Google Scholar]
  36. Sousa JAB, Plugge CM, Stams AJM, Bijmans MFM. Sulfate reduction in a hydrogen fed bioreactor operated at haloalkaline conditions. Water Res 2015; 68:67–76 [View Article] [PubMed]
    [Google Scholar]
  37. Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM et al. Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman. Front Microbiol 2017; 8:56 [View Article] [PubMed]
    [Google Scholar]
  38. Fones EM, Colman DR, Kraus EA, Stepanauskas R, Templeton AS et al. Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation. ISME J 2021; 15:1121–1135 [View Article] [PubMed]
    [Google Scholar]
  39. Brazelton WJ, Thornton CN, Hyer A, Twing KI, Longino AA et al. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy. Peer J 2017; 5:e2945 [View Article]
    [Google Scholar]
  40. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  41. Wasserfallen A, Nölling J, Pfister P, Reeve J, Conway de Macario E. Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:43–53 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005554
Loading
/content/journal/ijsem/10.1099/ijsem.0.005554
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error