1887

Abstract

A strain was isolated from the flower of a nodding thistle () collected in Bavaria, Germany. The strain is Gram-positive, rod-shaped, non-motile, non-sporulating, catalase- and oxidase-negative, and facultatively anaerobic. Growth can be detected at 10–37 °C and pH 4 to 9. The genome size is about 1.56 Mbp and the G+C content is 43.76 mol%. Assignment to the genus was done by average nucleotide identity (ANI), 16S rRNA gene sequence and multilocus sequence analyses. Calculations of ANI and digital DNA–DNA hybridization values indicate a novel species with DSM 23246 (93.58% ANI and 57.9 % dDDH) being its closest relative. Therefore, a new species named sp. nov. with TMW 2.2452 (=DSM 113480=CECT 30515) as type strain is proposed.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005553
2022-10-19
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/10/ijsem005553.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005553&mimeType=html&fmt=ahah

References

  1. Gallus MK, Vogel RF, Ehrmann MA. Optimization of a cultivation procedure to selectively isolate lactic acid bacteria from insects. J Appl Microbiol 2022; 132:3001–3016 [View Article]
    [Google Scholar]
  2. Lin S-T, Guu J-R, Wang H-M, Tamura T, Mori K et al. Fructobacillus papyriferae sp. nov., Fructobacillus papyrifericola sp. nov., Fructobacillus broussonetiae sp. nov. and Fructobacillus parabroussonetiae sp. nov., isolated from paper mulberry in Taiwan. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  3. Leisner JJ, Vancanneyt M, Van der Meulen R, Lefebvre K, Engelbeen K et al. Leuconostoc durionis sp. nov., a heterofermenter with no detectable gas production from glucose. Int J Syst Evol Microbiol 2005; 55:1267–1270 [View Article]
    [Google Scholar]
  4. Antunes A, Rainey FA, Nobre MF, Schumann P, Ferreira AM et al. Leuconostoc ficulneum sp. nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov. Int J Syst Evol Microbiol 2002; 52:647–655 [View Article]
    [Google Scholar]
  5. Chambel L, Chelo IM, Zé-Zé L, Pedro LG, Santos MA et al. Leuconostoc pseudoficulneum sp. nov., isolated from a ripe fig. Int J Syst Evol Microbiol 2006; 56:1375–1381 [View Article]
    [Google Scholar]
  6. Endo A, Irisawa T, Futagawa-Endo Y, Sonomoto K, Itoh K et al. Fructobacillus tropaeoli sp. nov., a fructophilic lactic acid bacterium isolated from a flower. Int J Syst Evol Microbiol 2011; 61:898–902 [View Article] [PubMed]
    [Google Scholar]
  7. Endo A, Okada S. Reclassification of the genus Leuconostoc and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov. Int J Syst Evol Microbiol 2008; 58:2195–2205 [View Article]
    [Google Scholar]
  8. Endo A, Maeno S, Tanizawa Y, Kneifel W, Arita M et al. Fructophilic lactic acid bacteria, a unique group of fructose-fermenting microbes. Appl Environ Microbiol 2018; 84:19 [View Article]
    [Google Scholar]
  9. Endo A. Fructophilic lactic acid bacteria inhabit fructose-rich niches in nature. Microb Ecol Health Dis 2012; 23: [View Article]
    [Google Scholar]
  10. NCBI Organism Overview - Fructobacillus tropaeoli; 2022 https://www.ncbi.nlm.nih.gov/genome/?term=txid709323[Organism:noexp]
  11. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  13. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  14. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  16. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [View Article]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogeniesconfidence Limits on phylogenies: an approach using the bootstrapan. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  18. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  19. De Bruyne K, Schillinger U, Caroline L, Boehringer B, Cleenwerck I et al. Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol 2007; 57:2952–2959 [View Article] [PubMed]
    [Google Scholar]
  20. Chelo IM, Zé-Zé L, Tenreiro R. Congruence of evolutionary relationships inside the Leuconostoc-Oenococcus-Weissella clade assessed by phylogenetic analysis of the 16S rRNA gene, dnaA, gyrB, rpoC and dnaK. Int J Syst Evol Microbiol 2007; 57:276–286 [View Article]
    [Google Scholar]
  21. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article]
    [Google Scholar]
  22. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  23. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  24. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 2016; 44:W3–W10 [View Article]
    [Google Scholar]
  25. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  27. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  28. Starrenburg MJ, Hugenholtz J. Citrate fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol 1991; 57:3535–3540 [View Article]
    [Google Scholar]
  29. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article] [PubMed]
    [Google Scholar]
  30. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology roups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  31. Schumann P. 5 - Peptidoglycan structure. In Rainey F, Oren A. eds Methods in Microbiology vol 38 Academic Press; 2011 pp 101–129
    [Google Scholar]
  32. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  33. Schleifer KH. 5 analysis of the chemical composition and primary structure of murein. In Bergan T. eds Methods in Microbiology vol 18 Academic Press; 1985 pp 123–156
    [Google Scholar]
  34. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005553
Loading
/content/journal/ijsem/10.1099/ijsem.0.005553
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error