1887

Abstract

The morphology, 16S rRNA gene phylogeny and 16S–23S rRNA gene ITS secondary structures of three strains of marine Cyanobacteria, isolated from inter- and subtidal environments from north Portugal were studied, resulting in the description of gen. nov., sp. nov. (Oscillatoriales ), gen. nov., sp. nov. (Leptolyngbyaceae) and sp. nov., named under the International Code of Nomenclature for algae, fungi, and plants. No diacritical morphological characters were found for the new genera and species. The 16S rRNA gene maximum-likelihood and Bayesian phylogenies supported that the genus is a member of the Oscillatoriales, morphologically similar to the genera and , but distant from them. The genus is positioned within the Leptolyngbyaceae (Synechococcales) and is closely related to . The secondary structures of the D1-D1′, Box B, V2 and V3 helices corroborate the phylogenetic results. Furthermore, our study supports previous observations of polyphyletic Oscillatoriales families and reinforces the need for their taxonomic revision.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005552
2022-10-20
2024-05-18
Loading full text...

Full text loading...

References

  1. Hamilton TL, Bryant DA, Macalady JL. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Environ Microbiol 2016; 18:325–340 [View Article]
    [Google Scholar]
  2. Calteau A, Fewer DP, Latifi A, Coursin T, Laurent T et al. Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria. BMC Genomics 2014; 15:977 [View Article]
    [Google Scholar]
  3. Leão PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V. The chemical ecology of cyanobacteria. Nat Prod Rep 2012; 29:372–391 [View Article]
    [Google Scholar]
  4. Brito Â, Ramos V, Mota R, Lima S, Santos A et al. Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast. Mol Phylogenet Evol 2017; 111:18–34 [View Article]
    [Google Scholar]
  5. Caires TA, Lyra G de M, Hentschke GS, Silva AMS da, Araújo VL de et al. Polyphasic delimitation of a Filamentous marine genus, Capillus gen. nov. (Cyanobacteria, Oscillatoriaceae) with the description of two Brazilian species. ALGAE 2018; 33:291–304 [View Article]
    [Google Scholar]
  6. Caires TA, de Mattos Lyra G, Hentschke GS, de Gusmão Pedrini A, Sant’Anna CL et al. Neolyngbya gen. nov. (Cyanobacteria, Oscillatoriaceae): a new filamentous benthic marine taxon widely distributed along the Brazilian coast. Mol Phylogenet Evol 2018; 120:196–211 [View Article]
    [Google Scholar]
  7. Engene N, Tronholm A, Paul VJ. Uncovering cryptic diversity of Lyngbya: the new tropical marine cyanobacterial genus Dapis (Oscillatoriales). J Phycol 2018; 54:435–446 [View Article]
    [Google Scholar]
  8. Konstantinou D, Voultsiadou E, Panteris E, Zervou S-K, Hiskia A et al. Leptothoe, a new genus of marine cyanobacteria (Synechococcales) and three new species associated with sponges from the Aegean Sea. J Phycol 2019; 55:882–897 [View Article]
    [Google Scholar]
  9. Zhou W-G, Ding D-W, Yang Q-S, Ahmad M, Zhang Y-Z et al. Marileptolyngbya sina gen. nov., sp. nov. and Salileptolyngbya diazotrophicum gen. nov., sp. nov. (Synechococcales, Cyanobacteria), species of cyanobacteria isolated from a marine ecosystem. Phytotaxa 2018; 383:75 [View Article]
    [Google Scholar]
  10. Miller MA, Schwartz T, Pickett BE, He S, Klem EB et al. A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol Bioinform Online 2015; 11:43–48 [View Article]
    [Google Scholar]
  11. Jahodářová E, Dvořák P, Hašler P, Holušová K, Poulíčková A. Elainella gen. nov.: a new tropical cyanobacterium characterized using a complex genomic approach. Eur J Phycol 2017; 53:39–51 [View Article]
    [Google Scholar]
  12. Mai T, Johansen JR, Pietrasiak N, Bohunická M, Martin MP. Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 2018; 365:1 [View Article]
    [Google Scholar]
  13. Nowicka-Krawczyk P, Mühlsteinová R, Hauer T. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Sci Rep 2019; 9:694 [View Article]
    [Google Scholar]
  14. Brito A, Ramos V, Seabra R, Santos A, Santos CL et al. Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: a polyphasic study. Syst Appl Microbiol 2012; 35:110–119 [View Article]
    [Google Scholar]
  15. Ramos V, Morais J, Vasconcelos VM. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies. Sci Data 2017; 4:170054 [View Article] [PubMed]
    [Google Scholar]
  16. Coelho C, Silva R, Veloso-Gomes F, Taveira-Pinto F. Potential effects of climate change on northwest Portuguese coastal zones. ICES J Mar Sci 2009; 66:1497–1507 [View Article]
    [Google Scholar]
  17. Komárek J, Anagnostidis K. Cyanoprokaryota 2. Teil Oscillatoriales. In Büdel B, Krienitz L, Gärtner G, Schagerl M. eds Süsswasserflora von Mitteleuropa vol 19/2 München: Elsevier Spektrum Akademische; 2005 pp 1–759
    [Google Scholar]
  18. Neilan BA, Jacobs D, Del Dot T, Blackall LL, Hawkins PR et al. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 1997; 47:693–697 [View Article]
    [Google Scholar]
  19. Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 2003; 69:5157–5169 [View Article]
    [Google Scholar]
  20. Sambrook J, Russell DW. Molecular Cloning, Volume 1: A Laboratory Manual New York: CSHL Press; 2001
    [Google Scholar]
  21. Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 1997; 63:3327–3332 [View Article]
    [Google Scholar]
  22. Lane D. J. 1999 16S/23S rRNA sequencing. Stackebrandt E., Goodfellow M. Nucleic Acid Techniques in Bacterial Systematics Wiley; Chichester:115–175
    [Google Scholar]
  23. Wright ES, Yilmaz LS, Noguera DR. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 2012; 78:717–725 [View Article]
    [Google Scholar]
  24. Heidari F, Zima J, Riahi H, Hauer T. New simple trichal cyanobacterial taxa isolated from radioactive thermal springs. Fottea 2018; 18:137–149 [View Article]
    [Google Scholar]
  25. Samylina OS et al. Ecology and biogeography of the ‘marine geitlerinema’ cluster and a description of Sodalinema orleanskyi sp nov., Sodalinema gerasimenkoae sp. nov., Sodalinema stali sp. nov. and Baaleninema simplex gen. et sp. nov. (oscillatoriales, cyanobacteria). FEMS Miocrbiol Ecol 2021; 97(8):104
    [Google Scholar]
  26. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article]
    [Google Scholar]
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  28. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article]
    [Google Scholar]
  29. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31:3406–3415 [View Article]
    [Google Scholar]
  30. Eusebio N, Rego A, Glasser NR, Castelo-Branco R, Balskus EP et al. Distribution and diversity of dimetal-carboxylate halogenases in cyanobacteria. BMC Genomics 2021; 22:633 [View Article]
    [Google Scholar]
  31. Komárek J, Kastovsky J, Mares J, Johansen JR. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia 2014; 86:295–335 [View Article]
    [Google Scholar]
  32. Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL et al. International code of nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen Koeltz Botanical Books; 2018
    [Google Scholar]
  33. Witt MJ, Sheehan EV, Bearhop S, Broderick AC, Conley DC et al. Assessing wave energy effects on biodiversity: the wave hub experience. Philos Trans A Math Phys Eng Sci 2012; 370:502–529 [View Article]
    [Google Scholar]
  34. Komárek J, Zapomělová E, Šmarda J, Kopecký J, Rejmánková E et al. Polyphasic evaluation of Limnoraphis robusta, a water-bloom forming cyanobacterium from Lake Atitlán, Guatemala, with a description of Limnoraphis gen. nov. Fottea 2013; 13:39–52 [View Article]
    [Google Scholar]
  35. Sharp K, Arthur KE, Gu L, Ross C, Harrison G et al. Phylogenetic and chemical diversity of three chemotypes of bloom-forming lyngbya species (Cyanobacteria: Oscillatoriales) from reefs of southeastern Florida. Appl Environ Microbiol 2009; 75:2879–2888 [View Article]
    [Google Scholar]
  36. Mühlsteinová R, Hauer T, De Ley P, Pietrasiak N. Seeking the true Oscillatoria: a quest for reliable phylogenetic and taxonomic reference point. Preslia 2018; 90:151–169
    [Google Scholar]
  37. Suda S, Watanabe MM, Otsuka S, Mahakahant A, Yongmanitchai W et al. Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol 2002; 52:1577–1595 [View Article]
    [Google Scholar]
  38. Sciuto K, Andreoli C, Rascio N, La Rocca N, Moro I. Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria). Cladistics 2012; 28:357–374 [View Article]
    [Google Scholar]
  39. Ishida T, Watanabe MM, Sugiyama J, Yokota A. Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol Lett 2001; 201:79–82 [View Article]
    [Google Scholar]
  40. Johansen JR, Casamatta DA. Recognizing cyanobacterial diversity through adoption of a new species paradigm. archiv_algolstud 2005; 117:71–93 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005552
Loading
/content/journal/ijsem/10.1099/ijsem.0.005552
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error