1887

Abstract

Bacterial strain H33 was isolated from tobacco plant soil and was characterized using a polyphasic taxonomy approach. Strain H33 was a Gram-stain-negative, rod-shaped, non-motile and strictly aerobic bacterium. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of the up-to-date bacterial core gene set (92 protein clusters) indicated that H33 belongs to the genus . Strain H33 showed the highest 16S rRNA gene sequence similarity to NL9 (97.2%) and showed 72.3–80.6 % average nucleotide identity and 19.7–29.2 % digital DNA–DNA hybridization identity with the strains of other species of the genus . Strain H33 grew optimally at 30°C, pH 7 and could tolerate 0.5 % (w/v) NaCl. The isoprenoid quinones were ubiquinone-9 (64.1%) and ubiquinone-10 (35.9%). Spermidine was the major polyamine. The major fatty acids of H33 were summed feature 8 (C 7 and/or C 6). The polar lipid profile consisted of a mixture of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, sphingoglycolipid, two unidentified lipids, two unidentified glycolipids, two unidentified aminoglycolipids and an unidentified phospholipid. The genomic DNA G+C content of H33 was 64.9 mol%. Based on the phylogenetic and phenotypic data, H33 was considered a representative of a novel species in the genus . We propose the name sp. nov., with H33 (=CCTCC AB 2022073=LMG 32569) as the type strain.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41967023)
    • Principle Award Recipient: MingshunLi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005529
2023-04-06
2024-05-14
Loading full text...

Full text loading...

References

  1. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article]
    [Google Scholar]
  2. Qin D, Ma C, Lv M, Yu CP. Sphingobium estronivorans sp. nov. and Sphingobium bisphenolivorans sp. nov., isolated from a wastewater treatment plant. Int J Syst Evol Microbiol 2020; 70:1822–1829 [View Article]
    [Google Scholar]
  3. Du J, Singh H, Yang J-E, Yin CS, Kook M et al. Sphingobium soli sp. nov. isolated from rhizosphere soil of a rose. Antonie van Leeuwenhoek 2001; 108:1091–1097 [View Article] [PubMed]
    [Google Scholar]
  4. Li L, Liu H, Shi Z, Wang G. Sphingobium cupriresistens sp. nov., a copper-resistant bacterium isolated from copper mine soil, and emended description of the genus Sphingobium. Int J Syst Evol Microbiol 2013; 63:604–609 [View Article]
    [Google Scholar]
  5. Chen WM, Guo YP, Sheu C, Sheu SY. Sphingobium algorifonticola sp. nov., isolated from a cold spring. Int J Syst Evol Microbiol 2020; 70:309–316 [View Article]
    [Google Scholar]
  6. Nguyen TM, Kim J. Sphingobium aromaticivastans sp. nov., a novel aniline- and benzene-degrading, and antimicrobial compound producing bacterium. Arch Microbiol 2019; 201:155–161 [View Article]
    [Google Scholar]
  7. Cai S, Shi C, Zhao J-D, Cao Q, He J et al. Sphingobium phenoxybenzoativorans sp. nov., a 2-phenoxybenzoic-acid-degrading bacterium. Int J Syst Evol Microbiol 2015; 65:1986–1991 [View Article] [PubMed]
    [Google Scholar]
  8. Sheu SY, Guo YP, Kwon SW, Chen WM. Sphingobium fluviale sp. nov., isolated from a river. Int J Syst Evol Microbiol 2020; 70:827–834 [View Article] [PubMed]
    [Google Scholar]
  9. Chen H, Jogler M, Rohde M, Klenk H-P, Busse H-J et al. Sphingobium limneticum sp. nov. and Sphingobium boeckii sp. nov., two freshwater planktonic members of the family Sphingomonadaceae, and reclassification of Sphingomonas suberifaciens as Sphingobium suberifaciens comb. nov. Int J Syst Evol Microbiol 2013; 63:735–743 [View Article] [PubMed]
    [Google Scholar]
  10. Lee Y, Jeon CO. Sphingobium paulinellae sp. nov. and Sphingobium algicola sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2017; 67:5165–5171 [View Article] [PubMed]
    [Google Scholar]
  11. Zhu L, Xin K, Chen C, Li C, Si M et al. Sphingobium endophyticus sp. nov., isolated from the root of Hylomecon japonica. Antonie van Leeuwenhoek 2015; 107:1001–1008 [View Article] [PubMed]
    [Google Scholar]
  12. Pinyakong O, Habe H, Omori T. The unique aromatic catabolic genes in Sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 2003; 49:1–19 [View Article] [PubMed]
    [Google Scholar]
  13. Ma X, Liang B, Qi M, Yun H, Shi K et al. Novel pathway for chloramphenicol catabolism in the activated sludge bacterial isolate Sphingobium sp. CAP-1. Environ Sci Technol 2020; 54:7591–7600 [View Article] [PubMed]
    [Google Scholar]
  14. Jia Y, Eltoukhy A, Wang J, Li X, Hlaing TS et al. Biodegradation of bisphenol A by Sphingobium sp. YC-JY1 and the essential role of cytochrome P450 Monooxygenase. Int J Mol Sci 2020; 21:10 [View Article] [PubMed]
    [Google Scholar]
  15. Park YJ, Kim KH, Han DM, Lee DH, Jeon CO. Sphingobium terrigena sp. nov., isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 2019; 69:2459–2464 [View Article]
    [Google Scholar]
  16. Révész F, Tóth EM, Kriszt B, Bóka K, Benedek T et al. Sphingobium aquiterrae sp. nov., a toluene, meta- and para-xylene-degrading bacterium isolated from petroleum hydrocarbon-contaminated groundwater. Int J Syst Evol Microbiol 2018; 68:2807–2812 [View Article] [PubMed]
    [Google Scholar]
  17. Chaudhary DK, Jeong SW, Kim J. Sphingobium naphthae sp. nov., with the ability to degrade aliphatic hydrocarbons, isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2017; 67:2986–2993 [View Article] [PubMed]
    [Google Scholar]
  18. Wu S, Xia X, Zhou Z, Wang D, Wang G. Nocardioides gansuensis sp. nov., isolated from geopark soil. Int J Syst Evol Microbiol 2019; 69:390–396 [View Article]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  23. Thompson EA. The method of minimum evolution. Ann Hum Genet 1973; 36:333–340 [View Article] [PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  25. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  28. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–9 [View Article] [PubMed]
    [Google Scholar]
  29. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  30. Xiong L, An L, Zong Y, Wang M, Wang G et al. Luteimonas gilva sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2020; 70:3462–3467 [View Article] [PubMed]
    [Google Scholar]
  31. Huq MA. Sphingobium chungangianum sp. nov., isolated from rhizosphere of Pinus koraiensis. Antonie van Leeuwenhoek 2019; 112:1341–1348 [View Article]
    [Google Scholar]
  32. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article] [PubMed]
    [Google Scholar]
  33. O’Donnell AG, Goodfellow M, Minnikin DE. Lipids in the classification of Nocardioides: reclassification of Arthrobacter simplex (Jensen) lochhead in the genus Nocardioides (Prauser) emend. O’Donnell et al. as Nocardioides simplex comb. nov. Arch Microbiol 1982; 133:323–329 [View Article] [PubMed]
    [Google Scholar]
  34. Hamana K, Niitsu M, Matsuzaki S, Samejima K, Igarashi Y et al. Novel linear and branched polyamines in the extremely thermophilic eubacteria Thermoleophilum, Bacillus and Hydrogenobacter. Biochem J 1992; 284 (Pt 3):741–747 [View Article] [PubMed]
    [Google Scholar]
  35. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. eds Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp 265–309
    [Google Scholar]
  36. Baek SH, Lim JH, Lee ST. Sphingobium vulgare sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 2010; 60:2473–2477 [View Article] [PubMed]
    [Google Scholar]
  37. Francis IM, Jochimsen KN, De Vos P, van Bruggen AHC. Reclassification of rhizosphere bacteria including strains causing corky root of lettuce and proposal of Rhizorhapis suberifaciens gen. nov., comb. nov., Sphingobium mellinum sp. nov., Sphingobium xanthum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov. Int J Syst Evol Microbiol 2014; 64:1340–1350 [View Article]
    [Google Scholar]
  38. Sheu SY, Shiau YW, Chen WM. Sphingobium sufflavum sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2013; 63:3444–3450 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005529
Loading
/content/journal/ijsem/10.1099/ijsem.0.005529
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error