1887

Abstract

Strain HMF5004 was isolated from a rivulet located in Yongin, Republic of Korea. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HMF5004 belonged to the genus . Strain HMF5004 was closely related to (97.7%) and (97.2%). The values of average nucleotide identity and digital DNA–DNA hybridization between strain HMF5004 and were 72.8 and 19.2 %, respectively. Cells of strain HMF5004 were Gram-stain-negative, rod-shaped, non-motile, catalase-positive and oxidase-positive. The DNA G+C content of strain HMF5004 was 42.4 mol%. Strain HMF5004 had menaquinone-7 as a major quinone. The major cellular fatty acids included iso-C, summed feature 3 (C 7 and/or C 6) and anteiso-C. The polar lipids of strain HMF5004 contained phosphatidylethanolamine, five unidentified aminolipids, one unidentified aminophospholipid and four unidentified polar lipids. On the basis of the evidence presented in this polyphasic taxonomic study, strain HMF5004 is considered to represent a novel species for which the name sp. nov. is proposed. The type strain is HMF5004 (=KCTC 82633=NBRC 115091).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005520
2022-10-07
2024-05-18
Loading full text...

Full text loading...

References

  1. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007; 57:2349–2354 [View Article]
    [Google Scholar]
  2. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2010; 60:134–139 [View Article] [PubMed]
    [Google Scholar]
  3. Seo YL, Khan SA, Kim HM, Chun BH, Han DM et al. Mucilaginibacter agri sp. nov. and Mucilaginibacter humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 2020; 70:4616–4622 [View Article] [PubMed]
    [Google Scholar]
  4. Chen W-M, Hsieh T-Y, Sheu S-Y. Mucilaginibacter amnicola sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 2018; 68:394–401 [View Article] [PubMed]
    [Google Scholar]
  5. Kim M, Shin S-K, Yi H. Mucilaginibacter celer sp. nov. and Aquirhabdus parva gen. nov., sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2020; 70:5479–5487 [View Article]
    [Google Scholar]
  6. Wei J-C, Sun L-N, Yuan Z-X, Hou X-T, Yang E-D et al. Mucilaginibacter rubeus sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 2017; 67:3099–3104 [View Article] [PubMed]
    [Google Scholar]
  7. Tang J, Huang J, Qiao Z, Wang R, Wang G. Mucilaginibacter pedocola sp. nov., isolated from a heavy-metal-contaminated paddy field. Int J Syst Evol Microbiol 2016; 66:4033–4038 [View Article] [PubMed]
    [Google Scholar]
  8. Yang L-L, Pang Y, Liu H-C, Xin Y-H, Liu Q. Mucilaginibacter glaciei sp. nov. and Mucilaginibacter pankratovii sp. nov., isolated from a glacier on the Tibetan Plateau. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  9. Kämpfer P, Busse H-J, McInroy JA, Glaeser SP. Mucilaginibacter auburnensis sp. nov., isolated from a plant stem. Int J Syst Evol Microbiol 2014; 64:1736–1742 [View Article] [PubMed]
    [Google Scholar]
  10. An D-S, Yin C-R, Lee S-T, Cho C-H. Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. Int J Syst Evol Microbiol 2009; 59:1122–1125 [View Article] [PubMed]
    [Google Scholar]
  11. Huq MA, Akter S, Lee S-Y. Mucilaginibacter formosus sp. nov., a bacterium isolated from road-side soil. Antonie van Leeuwenhoek 2019; 112:513–521 [View Article] [PubMed]
    [Google Scholar]
  12. Akter S, Huq MA. Mucilaginibacter corticis sp. nov., isolated from bark of Pinus koraiensis. Antonie van Leeuwenhoek 2020; 113:491–498 [View Article] [PubMed]
    [Google Scholar]
  13. Lee SA, Le VV, Ko SR, Lee N, Oh HM et al. Mucilaginibacter inviolabilis sp. nov., isolated from the phycosphere of Haematococcus lacustris NIES 144 culture. Int J Syst Evol Microbiol 2021; 71:004668
    [Google Scholar]
  14. Madhaiyan M, Poonguzhali S, Lee J-S, Senthilkumar M, Lee KC et al. Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. Int J Syst Evol Microbiol 2010; 60:2451–2457 [View Article] [PubMed]
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  16. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on Phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  22. Stackebrandt E. Taxonomic parameters revisited: tarnished gold standards. Microbiol 2006; 33:152–155
    [Google Scholar]
  23. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  24. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  25. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  26. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E et al. IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res 2012; 40:D115–22 [View Article] [PubMed]
    [Google Scholar]
  27. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  28. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  30. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  31. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  32. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. eds Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp 21–33
    [Google Scholar]
  33. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Collins MD. Analysis of isoprenoid quinones. In Gottschalk G. eds Methods in Microbiology New York: Academic Press; 1985 pp 329–366
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005520
Loading
/content/journal/ijsem/10.1099/ijsem.0.005520
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error