1887

Abstract

A sulphate-reducing magnetotactic bacterium, designated strain FSS-1, was isolated from sediments and freshwater of Suwa Pond located in Hidaka, Saitama, Japan. Strain FSS-1 was a motile, Gram-negative and curved rod-shaped bacterium that synthesizes bullet-shaped magnetite (FeO) nanoparticles in each cell. Strain FSS-1 was able to grow in the range of pH 6.5–8.0 (optimum, pH 7.0), 22–34 °C (optimum, 28 °C) and with 0–8.0 g l NaCl (optimum, 0–2.0 g l NaCl). Strain FSS-1 grew well in the presence of 50 µM ferric quinate as an iron source. The major fatty acids were anteiso-C, iso-C and anteiso-C. The major menaquinone was MK-7 (H). Strain FSS-1 contained desulfoviridin, cytochrome and catalase, but did not contain oxidase. Strain FSS-1 used fumarate, lactate, pyruvate, malate, formate/acetate, succinate, tartrate, ethanol, 1-propanol, peptone, soytone and yeast extract as electron donors, while the strain used sulphate, thiosulphate and fumarate as electron acceptors. Fumarate was fermented in the absence of electron acceptors. Analysis of the 16S rRNA gene sequence showed that strain FSS-1 is a member of the genus . The gene sequence showed 96.7, 95.0, 92.0, 91.2 and 91.4% similarities to the most closely related members of the genera B7-43, BSY, DSM 107105, ThAc01 and RS-1, respectively. The DNA G+C content of strain FSS-1 was 67.5 mol%. The average nucleotide identity value between strain FSS-1 and B7-43 was 80.7 %. Therefore, strain FSS-1 represents a novel species within the genus , for which the name sp. nov. is proposed (=JCM 32405=DSM 110007).

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005516
2022-09-27
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/9/ijsem005516.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005516&mimeType=html&fmt=ahah

References

  1. Blakemore R. Magnetotactic bacteria. Science 1975; 190:377–379 [View Article] [PubMed]
    [Google Scholar]
  2. Bazylinski DA, Frankel RB. Magnetosome formation in prokaryotes. Nat Rev Microbiol 2004; 2:217–230 [View Article] [PubMed]
    [Google Scholar]
  3. Faivre D, Schüler D. Magnetotactic bacteria and magnetosomes. Chem Rev 2008; 108:4875–4898 [View Article] [PubMed]
    [Google Scholar]
  4. Jogler C, Schüler D. Genomics, genetics, and cell biology of magnetosome formation. Annu Rev Microbiol 2009; 63:501–521 [View Article] [PubMed]
    [Google Scholar]
  5. Pan Y, Deng C, Liu Q, Petersen N, Zhu R. Biomineralization and magnetism of bacterial magnetosomes. Chinese Sci Bull 2004; 49:2563 [View Article]
    [Google Scholar]
  6. Schüler D. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 2008; 32:654–672 [View Article] [PubMed]
    [Google Scholar]
  7. Lefèvre CT, Menguy N, Abreu F, Lins U, Pósfai M et al. A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science 2011; 334:1720–1723 [View Article] [PubMed]
    [Google Scholar]
  8. Li J, Menguy N, Roberts AP, Gu L, Leroy E et al. Bullet‐shaped magnetite biomineralization within a magnetotactic Deltaproteobacterium: implications for magnetofossil identification. J Geophys Res Biogeosci 2020; 125: [View Article]
    [Google Scholar]
  9. Liu P, Liu Y, Zhao X, Roberts AP, Zhang H et al. Diverse phylogeny and morphology of magnetite biomineralized by magnetotactic cocci. Environ Microbiol 2021; 23:1115–1129 [View Article] [PubMed]
    [Google Scholar]
  10. Abreu F, Leão P, Vargas G, Cypriano J, Figueiredo V et al. Culture-independent characterization of a novel magnetotactic member affiliated to the beta class of the proteobacteria phylum from an acidic lagoon. Environ Microbiol 2018; 20:2615–2624 [View Article] [PubMed]
    [Google Scholar]
  11. Lin W, Zhang W, Zhao X, Roberts AP, Paterson GA et al. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J 2018; 12:1508–1519 [View Article] [PubMed]
    [Google Scholar]
  12. Kolinko S, Richter M, Glöckner F-O, Brachmann A, Schüler D. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ Microbiol 2016; 18:21–37 [View Article] [PubMed]
    [Google Scholar]
  13. Lin W, Pan Y. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria. Environ Microbiol Rep 2015; 7:237–242 [View Article] [PubMed]
    [Google Scholar]
  14. Lin W, Pan Y, Bazylinski DA. Diversity and ecology of and biomineralization by magnetotactic bacteria. Environ Microbiol Rep 2017; 9:345–356 [View Article] [PubMed]
    [Google Scholar]
  15. Maratea D, Blakemore RP. Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum. Int J Syst Bacteriol 1981; 31:452–455 [View Article]
    [Google Scholar]
  16. Matsunaga T, Sakaguchi T, Tadakoro F. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 1991; 35:651–655 [View Article]
    [Google Scholar]
  17. Schleifer KH, Schüler D, Spring S, Weizenegger M, Amann R et al. The genus Magnetospirillum gen. nov. description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 1991; 14:379–385 [View Article]
    [Google Scholar]
  18. Dziuba M, Koziaeva V, Grouzdev D, Burganskaya E, Baslerov R et al. Magnetospirillum caucaseum sp. nov., Magnetospirillum marisnigri sp. nov. and Magnetospirillum moscoviense sp. nov., freshwater magnetotactic bacteria isolated from three distinct geographical locations in European Russia. Int J Syst Evol Microbiol 2016; 66:2069–2077 [View Article]
    [Google Scholar]
  19. Williams TJ, Lefèvre CT, Zhao W, Beveridge TJ, Bazylinski DA. Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int J Syst Evol Microbiol 2012; 62:2443–2450 [View Article]
    [Google Scholar]
  20. Bazylinski DA, Williams TJ, Lefèvre CT, Trubitsyn D, Fang J et al. Magnetovibrio blakemorei gen. nov., sp. nov., a magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. Int J Syst Evol Microbiol 2013; 63:1824–1833 [View Article]
    [Google Scholar]
  21. Bazylinski DA, Williams TJ, Lefèvre CT, Berg RJ, Zhang CL et al. Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int J Syst Evol Microbiol 2013; 63:801–808 [View Article]
    [Google Scholar]
  22. Sakaguchi T, Arakaki A, Matsunaga T. Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 2002; 52:215–221 [View Article] [PubMed]
    [Google Scholar]
  23. Descamps ECT, Monteil CL, Menguy N, Ginet N, Pignol D et al. Desulfamplus magnetovallimortis gen. nov., sp. nov., a magnetotactic bacterium from a brackish desert spring able to biomineralize greigite and magnetite, that represents a novel lineage in the Desulfobacteraceae. Syst Appl Microbiol 2017; 40:280–289 [View Article] [PubMed]
    [Google Scholar]
  24. Amann R, Peplies J, S D. Diversity and taxonomy of magnetotactic bacteria. In Magnetoreception and Magnetosomes in Bacteria Berlin, Germany: Springer; 2007 pp 24–36 [View Article]
    [Google Scholar]
  25. Wenter R, Wanner G, Schüler D, Overmann J. Ultrastructure, tactic behaviour and potential for sulfate reduction of a novel multicellular magnetotactic prokaryote from North Sea sediments. Environ Microbiol 2009; 11:1493–1505 [View Article] [PubMed]
    [Google Scholar]
  26. Bazylizinki DA, Heywood BR, Mann S, Frankel RB. Fe304 and Fe3S4 in a bacterium. Nature 1993; 366:218 [View Article]
    [Google Scholar]
  27. Simmons SL, Edwards KJ. Unexpected diversity in populations of the many-celled magnetotactic prokaryote. Environ Microbiol 2007; 9:206–215 [View Article] [PubMed]
    [Google Scholar]
  28. Lins U, Keim CN, Evans FF, Farina M, Buseck PR. Magnetite (Fe3O4) and greigite (Fe3S4) crystals in multicellular magnetotactic prokaryotes. Geomicrobiol J 2007; 24:43–50 [View Article]
    [Google Scholar]
  29. Lefèvre CT, Frankel RB, Pósfai M, Prozorov T, Bazylinski DA. Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environ Microbiol 2011; 13:2342–2350 [View Article] [PubMed]
    [Google Scholar]
  30. Sakaguchi T, Burgess JG, Matsunaga T. Magnetite formation by a sulphate-reducing bacterium. Nature 1993; 365:47–49 [View Article]
    [Google Scholar]
  31. Li J, Zhang H, Liu P, Menguy N, Roberts AP et al. Phylogenetic and structural identification of a novel magnetotactic Deltaproteobacteria strain, WYHR-1, from a Freshwater Lake. Appl Environ Microbiol 2019; 85:e00731-19 [View Article] [PubMed]
    [Google Scholar]
  32. Lefèvre CT, Howse PA, Schmidt ML, Sabaty M, Menguy N et al. Growth of magnetotactic sulfate-reducing bacteria in oxygen concentration gradient medium. Environ Microbiol Rep 2016; 8:1003–1015 [View Article] [PubMed]
    [Google Scholar]
  33. Lefèvre CT, Frankel RB, Pósfai M, Prozorov T, Bazylinski DA. Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environ Microbiol 2011; 13:2342–2350 [View Article] [PubMed]
    [Google Scholar]
  34. Abreu F, Martins JL, Silveira TS, Keim CN, de Barros HGPL et al. Candidatus Magnetoglobus multicellularis”, a multicellular, magnetotactic prokaryote from a hypersaline environment. Int J Syst Evol Microbiol 2007; 57:1318–1322 [View Article] [PubMed]
    [Google Scholar]
  35. Zhou K, Pan H, Zhang S, Yue H, Xiao T et al. Occurrence and microscopic analyses of multicellular magnetotactic prokaryotes from coastal sediments in the Yellow Sea. Chin J Ocean Limnol 2011; 29:246–251 [View Article]
    [Google Scholar]
  36. Zhou K, Zhang W-Y, Yu-Zhang K, Pan H-M, Zhang S-D et al. A novel genus of multicellular magnetotactic prokaryotes from the Yellow Sea. Environ Microbiol 2012; 14:405–413 [View Article] [PubMed]
    [Google Scholar]
  37. Shimoshige H, Kobayashi H, Shimamura S, Mizuki T, Inoue A et al. Isolation and cultivation of a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio. PLOS ONE 2021; 16:e0248313 [View Article] [PubMed]
    [Google Scholar]
  38. Jogler C, Lin W, Meyerdierks A, Kube M, Katzmann E et al. Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl Environ Microbiol 2009; 75:3972–3979 [View Article] [PubMed]
    [Google Scholar]
  39. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963; 238:2882–2886 [View Article] [PubMed]
    [Google Scholar]
  40. Bazylinski DA, Dean AJ, Schüler D, Phillips EJ, Lovley DR. N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2000; 2:266–273 [View Article] [PubMed]
    [Google Scholar]
  41. Frankel RB, Bazylinski DA, Johnson MS, Taylor BL. Magneto-aerotaxis in marine coccoid bacteria. Biophys J 1997; 73:994–1000 [View Article] [PubMed]
    [Google Scholar]
  42. Postgate JR. Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J Gen Microbiol 1956; 14:545–572 [View Article] [PubMed]
    [Google Scholar]
  43. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991 pp 115–175
    [Google Scholar]
  44. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  45. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  46. Sayavedra L, Li T, Bueno Batista M, Seah BKB, Booth C et al. Desulfovibrio diazotrophicus sp. nov., a sulfate-reducing bacterium from the human gut capable of nitrogen fixation. Environ Microbiol 2021; 23:3164–3181 [View Article] [PubMed]
    [Google Scholar]
  47. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012; 28:1420–1428 [View Article] [PubMed]
    [Google Scholar]
  48. Hannon GJ. FASTX-Toolkit: FASTQ/A short-reads pre-processing tools; 2010 http://hannonlab.cshl.edu/fastx_toolkit/
  49. Nishimura O, Hara Y, Kuraku S. gVolante for standardizing completeness assessment of genome and transcriptome assemblies. Bioinformatics 2017; 33:3635–3637 [View Article] [PubMed]
    [Google Scholar]
  50. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  51. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  52. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  53. Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 2011; 77:1925–1936 [View Article] [PubMed]
    [Google Scholar]
  54. Buchanan BB, Arnon DI. A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res 1990; 24:47–53 [View Article] [PubMed]
    [Google Scholar]
  55. Sánchez-Andrea I, Guedes IA, Hornung B, Boeren S, Lawson CE et al. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun 2020; 11:5090 [View Article] [PubMed]
    [Google Scholar]
  56. Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972–6016 [View Article]
    [Google Scholar]
  57. Thiel J, Spring S, Tindall BJ, Spröer C, Bunk B et al. Desulfolutivibrio sulfoxidireducens gen. nov., sp. nov., isolated from a pyrite-forming enrichment culture and reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov. Syst Appl Microbiol 2020; 43:126105 [View Article]
    [Google Scholar]
  58. Galushko A, Kuever J. Fundidesulfovibrio. In Bergey’s Manual of Systematics of Archaea and Bacteria Wiley; 2020 pp 1–6 [View Article]
    [Google Scholar]
  59. Jogler C, Wanner G, Kolinko S, Niebler M, Amann R et al. Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching nitrospira phylum. Proc Natl Acad Sci USA 2011; 108:1134–1139 [View Article]
    [Google Scholar]
  60. Kolinko S, Jogler C, Katzmann E, Wanner G, Peplies J et al. Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ Microbiol 2012; 14:1709–1721 [View Article]
    [Google Scholar]
  61. Lefèvre CT, Pósfai M, Abreu F, Lins U, Frankel RB et al. Morphological features of elongated-anisotropic magnetosome crystals in magnetotactic bacteria of the Nitrospirae phylum and the Deltaproteobacteria class. Earth Planet Sci Lett 2011; 312:194–200 [View Article]
    [Google Scholar]
  62. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013; 499:431–437 [View Article]
    [Google Scholar]
  63. Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, de Almeida LGP et al. Monophyletic origin of magnetotaxis and the first magnetosomes. Environ Microbiol 2013; 15:2267–2274 [View Article]
    [Google Scholar]
  64. Basso O, Caumette P, Magot M. Desulfovibrio putealis sp. nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 2005; 55:101–104 [View Article]
    [Google Scholar]
  65. Suzuki D, Ueki A, Shizuku T, Ohtaki Y, Ueki K. Desulfovibrio butyratiphilus sp. nov., a Gram-negative, butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic municipal sewage sludge digester. Int J Syst Evol Microbiol 2010; 60:595–602 [View Article]
    [Google Scholar]
  66. Bak F, Pfennig N. Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 1987; 147:184–189 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005516
Loading
/content/journal/ijsem/10.1099/ijsem.0.005516
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error