1887

Abstract

Two endophytic bacteria, designated strains CQZ9-1 and MQZ9-1, were isolated from semi-mangrove plant collected from Maowei Sea Mangrove Nature Reserve in Guangxi Zhuang Autonomous Region, PR China. The two strains possessed almost identical 16S rRNA gene sequences (99.7 %). The average nucleotide identity (ANI), average amino acid identity (AAI) and the digital DNA-DNA hybridization (dDDH) values between the two strains were 100 %, indicating that they represented the same species. The 16S rRNA gene sequence similarities between strains CQZ9-1, MQZ9-1 and the most closely related type strains, KSK16Y-1, MQZ13P-4 and CBS 5Q-3 were 98.0–98.1, 97.3–97.4 and 97.3–97.4 %, respectively. The results of phylogenetic analyses based on 16S rRNA gene sequences and genome sequences indicated that CQZ9-1 and MQZ9-1 formed a distinct lineage with CBS5Q-3, 40Bstr34, KSK16Y-1, MQZ13P-4, JCM 30119 and 22II-16-19i. The draft genomes of strains CQZ9-1 and MQZ9-1 were 4  162  933 bp and 4  164  266 bp in size, respectively, and their DNA G+C contents were both 63.8 %. Comparative genome analysis of the two strains and the type strains of related species revealed ANI, AAI and dDDH values below the cut-off levels of 95-96, 95.5 and 70 %, respectively. The ubiquinone detected in CQZ9-1 was Q-10. The major cellular fatty acid of strains CQZ9-1 and MQZ9-1 was found to be Cω7. Combined data from phenotypic, phylogenetic and chemotaxonomic studies indicated that CQZ9-1 and MQZ9-1 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CQZ9-1 (= CGMCC 1.18725 = JCM 34331).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005514
2022-10-03
2024-05-18
Loading full text...

Full text loading...

References

  1. Palmer M, Steenkamp ET, Blom J, Hedlund BP, Venter SN. All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy. Int J Syst Evol Microbiol 2020; 70:2937–2948 [View Article] [PubMed]
    [Google Scholar]
  2. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043–1047 [View Article] [PubMed]
    [Google Scholar]
  3. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  4. Kämpfer P, Glaeser SP. Prokaryotic taxonomy in the sequencing era--the polyphasic approach revisited. Environ Microbiol 2012; 14:291–317 [View Article] [PubMed]
    [Google Scholar]
  5. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  6. Gevers D, Dawyndt P, Vandamme P, Willems A, Vancanneyt M et al. Stepping stones towards a new prokaryotic taxonomy. Philos Trans R Soc Lond B Biol Sci 2006; 361:1911–1916 [View Article] [PubMed]
    [Google Scholar]
  7. Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC. Whole-genome prokaryotic phylogeny. Bioinformatics 2005; 21:2329–2335 [View Article] [PubMed]
    [Google Scholar]
  8. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  9. Vandamme P, Peeters C. Time to revisit polyphasic taxonomy. Antonie Van Leeuwenhoek 2014; 106:57–65 [View Article] [PubMed]
    [Google Scholar]
  10. Liang J, Liu J, Zhang XH. Jiella aquimaris gen. nov., sp. nov., isolated from offshore surface seawater. Int J Syst Evol Microbiol 2015; 65:1127–1132 [View Article] [PubMed]
    [Google Scholar]
  11. Chen M-S, Li F-N, Chen X-H, Huang Z-H, Yan X-R et al. Jiella mangrovi sp. nov., a novel endophytic bacterium isolated from leaf of Rhizophora stylosa. Antonie Van Leeuwenhoek 2021; 114:1633–1645 [View Article] [PubMed]
    [Google Scholar]
  12. Chen M-S, Yi H-B, Huang Z-H, Yan X-R, Chen X-H et al. Jiella sonneratiae sp. nov., a novel endophytic bacterium isolated from bark of Sonneratia apetala. Int J Syst Evol Microbiol 2022; 72:72 [View Article] [PubMed]
    [Google Scholar]
  13. Tuo L, Yan XR, Xiao JH. Jiella endophytica sp. nov., a novel endophytic bacterium isolated from root of Ficus microcarpa Linn. f. Antonie Van Leeuwenhoek 2019; 112:1457–1463 [View Article] [PubMed]
    [Google Scholar]
  14. Xue Z, Zhu S, Chen X, Chen T, Ren N et al. Jiella pacifica sp. nov., isolated from the West Pacific Ocean. Int J Syst Evol Microbiol 2020; 70:4345–4350 [View Article] [PubMed]
    [Google Scholar]
  15. Bai X, Xiong Y, Lu S, Jin D, Lai X et al. Streptococcus pantholopis sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii). Int J Syst Evol Microbiol 2016; 66:3281–3286 [View Article]
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  24. Lim HJ, Lee EH, Yoon Y, Chua B, Son A. Portable lysis apparatus for rapid single-step DNA extraction of Bacillus subtilis. J Appl Microbiol 2016; 120:379–387 [View Article] [PubMed]
    [Google Scholar]
  25. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  26. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article]
    [Google Scholar]
  27. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32:D277–80 [View Article] [PubMed]
    [Google Scholar]
  28. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–9 [View Article] [PubMed]
    [Google Scholar]
  29. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25–29 [View Article]
    [Google Scholar]
  30. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009; 37:D233–8 [View Article]
    [Google Scholar]
  31. Blin K, Shaw S, Kautsar SA, Medema MH, Weber T. The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes. Nucleic Acids Res 2021; 49:D639–D643 [View Article] [PubMed]
    [Google Scholar]
  32. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  33. Avram O, Rapoport D, Portugez S, Pupko T. M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res 2019; 47:W88–W92 [View Article] [PubMed]
    [Google Scholar]
  34. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  35. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  36. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color name Charts illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  37. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  38. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids Newark, DE: MIDI inc: MIDI technical note; 1990
    [Google Scholar]
  39. Tuo L, Dong Y-P, Habden X, Liu J-M, Guo L et al. Nocardioides deserti sp. nov., an actinobacterium isolated from desert soil. Int J Syst Evol Microbiol 2015; 65:1604–1610 [View Article] [PubMed]
    [Google Scholar]
  40. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  41. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  42. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article]
    [Google Scholar]
  43. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  44. Wargo MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:2112–2120 [View Article] [PubMed]
    [Google Scholar]
  45. Giaever HM, Styrvold OB, Kaasen I, Strøm AR. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 1988; 170:2841–2849 [View Article] [PubMed]
    [Google Scholar]
  46. Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F et al. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol 2012; 12:207 [View Article] [PubMed]
    [Google Scholar]
  47. Presnell CE, Bhatti G, Numan LS, Lerche M, Alkhateeb SK et al. Computational insights into the role of glutathione in oxidative stress. Curr Neurovasc Res 2013; 10:185–194 [View Article] [PubMed]
    [Google Scholar]
  48. Wongsaroj L, Saninjuk K, Romsang A, Duang-Nkern J, Trinachartvanit W et al. Pseudomonas aeruginosa glutathione biosynthesis genes play multiple roles in stress protection, bacterial virulence and biofilm formation. PLoS One 2018; 13:e0205815 [View Article]
    [Google Scholar]
  49. Kanai T, Takahashi K, Inoue H. Three distinct-type glutathione S-transferases from Escherichia coli important for defense against oxidative stress. J Biochem 2006; 140:703–711 [View Article]
    [Google Scholar]
  50. Afzal I, Shinwari Z, Iqrar I. Selective isolation and characterization of agriculturally beneficial endophytic bacteria from wild hemp using canola. Pakistan Journal of Botany 2015; 47:1999–2008
    [Google Scholar]
  51. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 2016; 21:573 [View Article] [PubMed]
    [Google Scholar]
  52. Lee SA, Kim T-W, Heo J, Sang M-K, Song J et al. Paenibacillus lycopersici sp. nov. and Paenibacillus rhizovicinus sp. nov., isolated from the rhizosphere of tomato (Solanum lycopersicum). J Microbiol 2020; 58:832–840 [View Article] [PubMed]
    [Google Scholar]
  53. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable griculture. Front Plant Sci 2018; 9:1473 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005514
Loading
/content/journal/ijsem/10.1099/ijsem.0.005514
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error