1887

Abstract

The order is a deep-branching lineage within the phylum . Most representatives have been isolated from terrestrial environments. A strain isolated from a grassland soil was found to be affiliated with this order and therefore characterized by a polyphasic approach. Cells of strain 0166_1 are Gram-positive, short rods, non-motile, non-spore-forming and divide by binary fission. A surface layer with protrusions covers the majority of the cells. Strain 0166_1 grows optimally around neutral to slightly alkaline pH (pH 7.1–7.9) and at temperatures between 24–36 °C in SSE/HD 1 : 10 medium. It grows optimally with 0–0.5% NaCl (w/v) but can withstand concentrations up to 5 %. The major fatty acids are C ω9, C 7, C cyclo 7, C c methyl and C cyclo 9. The major polar lipids are diphosphatidylglycerol, two unidentified phospholipids and one unidentified glycolipid. MK-7(H4) and MK-7(H2) are the predominant respiratory quinones. -2,6-Diaminopimelic acid is the diagnostic diamino acid in the cell-wall peptidoglycan. The G+C content for strain 0166_1 is 72.8 mol%. 16S rRNA gene sequence analysis indicated that this bacterium was related to KV-962 and YC2-25 with 95.5 and 95.2 % sequence similarity, respectively. Based on the phenotypic, genomic and phylogenetic data, we propose the novel species sp. nov. (type strain 0166_1=DSM 104329=LMG 29999=CECT 9240) of the novel genus gen. nov. within the novel family fam. nov.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award OV 20/27)
    • Principle Award Recipient: JörgOvermann
  • Deutsche Forschungsgemeinschaft (Award OV 20/21-1)
    • Principle Award Recipient: JörgOvermann
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005508
2022-08-26
2024-05-20
Loading full text...

Full text loading...

References

  1. Li C, He Y-Q, Cui L-Q, Albuquerque L, Chen R-W et al. Miltoncostaea marina gen. nov. sp. nov., and Miltoncostaea oceani sp. nov., a novel deep branching phylogenetic lineage within the class Thermoleophilia isolated from marine environments, and proposal of Miltoncostaeaceae fam. nov. and Miltoncostaeales ord. nov. Syst Appl Microbiol 2021; 44:126216 [View Article]
    [Google Scholar]
  2. Chun S-J, Cui Y, Jin C, Cho AR, Wong S-K et al. Paraconexibacter algicola gen. nov., sp. nov., a novel actinobacterium isolated from a eutrophic lake during the end of cyanobacterial harmful algal blooms, and proposal of Paraconexibacteraceae fam. nov. in the order Solirubrobacterales. Int J Syst Evol Microbiol 2020; 70:915–922 [View Article] [PubMed]
    [Google Scholar]
  3. Almeida B, Vaz-Moreira I, Schumann P, Nunes OC, Carvalho G et al. Patulibacter medicamentivorans sp. nov., isolated from activated sludge of a wastewater treatment plant. Int J Syst Evol Microbiol 2013; 63:2588–2593 [View Article] [PubMed]
    [Google Scholar]
  4. Vieira S, Luckner M, Wanner G, Overmann J. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. Int J Syst Evol Microbiol 2017; 67:1408–1414 [View Article]
    [Google Scholar]
  5. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 2010; 11:473–485 [View Article]
    [Google Scholar]
  6. Vieira S, Pascual J, Boedeker C, Geppert A, Riedel T et al. Terricaulis silvestris gen. nov., sp. nov., a novel prosthecate, budding member of the family Caulobacteraceae isolated from forest soil. Int J Syst Evol Microbiol 2020; 70:4966–4977 [View Article] [PubMed]
    [Google Scholar]
  7. Wüst PK, Foesel BU, Geppert A, Huber KJ, Luckner M et al. Brevitalea aridisoli, B. deliciosa and Arenimicrobium luteum, three novel species of Acidobacteria subdivision 4 (class Blastocatellia) isolated from savanna soil and description of the novel family Pyrinomonadaceae. Int J Syst Evol Microbiol 2016; 66:3355–3366 [View Article] [PubMed]
    [Google Scholar]
  8. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260–296 [View Article] [PubMed]
    [Google Scholar]
  9. Tschech A, Pfennig N. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 1984; 137:163–167 [View Article]
    [Google Scholar]
  10. Camarinha-Silva A, Jáuregui R, Chaves-Moreno D, Oxley APA, Schaumburg F et al. Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. Environ Microbiol 2014; 16:2939–2952 [View Article] [PubMed]
    [Google Scholar]
  11. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article] [PubMed]
    [Google Scholar]
  12. Foesel BU, Rohde M, Overmann J. Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil - the first described species of Acidobacteria subdivision 4. Syst Appl Microbiol 2013; 36:82–89 [View Article] [PubMed]
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  14. Seki T, Matsumoto A, Shimada R, Inahashi Y, Ōmura S et al. Conexibacter arvalis sp. nov., isolated from a cultivated field soil sample. Int J Syst Evol Microbiol 2012; 62:2400–2404 [View Article] [PubMed]
    [Google Scholar]
  15. Lee SD. Conexibacter stalactiti sp. nov., isolated from stalactites in a lava cave and emended description of the genus Conexibacter. Int J Syst Evol Microbiol 2017; 67:3214–3218 [View Article] [PubMed]
    [Google Scholar]
  16. Gerhardt P. Methods for Ggeneral and Mmolecular Bbacteriology Washington, D.C: American Society for Microbiology; 1994
    [Google Scholar]
  17. Bast E. Mikrobiologische Methoden, 3rd edn. Berlin, Heidelberg: Springer Spektrum; 2014 [View Article]
    [Google Scholar]
  18. Wanner G, Vogl K, Overmann J. Ultrastructural characterization of the prokaryotic symbiosis in “Chlorochromatium aggregatum.”. J Bacteriol 2008; 190:3721–3730 [View Article] [PubMed]
    [Google Scholar]
  19. Kuhn A, Sparks IL, Morita YS. Cell walls and membranes of Actinobacteria. In Subcellular Biochemistry pp 417–469
    [Google Scholar]
  20. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G et al. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 2008; 190:5672–5680 [View Article] [PubMed]
    [Google Scholar]
  21. Cowan ST, Barrow GI, Steel KJ, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge University Press; 1993 [View Article]
    [Google Scholar]
  22. Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021; 71:004631 [View Article]
    [Google Scholar]
  23. Monciardini P, Cavaletti L, Schumann P, Rohde M, Donadio S. Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. Int J Syst Evol Microbiol 2003; 53:569–576 [View Article]
    [Google Scholar]
  24. Kim KK, Lee KC, Lee J-S. Patulibacter ginsengiterrae sp. nov., isolated from soil of a ginseng field, and an emended description of the genus Patulibacter. Int J Syst Evol Microbiol 2012; 62:563–568 [View Article] [PubMed]
    [Google Scholar]
  25. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ et al. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst Appl Microbiol 2015; 38:534–544 [View Article] [PubMed]
    [Google Scholar]
  26. An D-S, Siddiqi MZ, Kim K-H, Yu H-S, Im W-T. Baekduia soli gen. nov., sp. nov., a novel bacterium isolated from the soil of Baekdu Mountain and proposal of a novel family name, Baekduiaceae fam. nov. J Microbiol 2018; 56:24–29 [View Article]
    [Google Scholar]
  27. Takahashi Y, Matsumoto A, Morisaki K, Ōmura S. Patulibacter minatonensis gen. nov., sp. nov., a novel actinobacterium isolated using an agar medium supplemented with superoxide dismutase, and proposal of Patulibacteraceae fam. nov. Int J Syst Evol Microbiol 2006; 56:401–406 [View Article] [PubMed]
    [Google Scholar]
  28. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
  29. Reddy GSN, Garcia-Pichel F. Description of Patulibacter americanus sp. nov., isolated from biological soil crusts, emended description of the genus Patulibacter Takahashi et al. 2006 and proposal of Solirubrobacterales ord. nov. and Thermoleophilales ord. nov. Int J Syst Evol Microbiol 2009; 59:87–94 [View Article] [PubMed]
    [Google Scholar]
  30. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  31. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. eds Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; pp 330–393
    [Google Scholar]
  32. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 2001
    [Google Scholar]
  33. Schumann P. Peptidoglycan Structure. In Methods in Microbiology Elsevier; 2011 pp 101–129
    [Google Scholar]
  34. Schumann P, Kalensee F, Cao J, Criscuolo A, Clermont D et al. Reclassification of Haloactinobacterium glacieicola as Occultella glacieicola gen. nov., comb. nov., of Haloactinobacterium album as Ruania alba comb. nov, with an emended description of the genus Ruania, recognition that the genus names Haloactinobacterium and Ruania are heterotypic synonyms and description of Occultella aeris sp. nov., a halotolerant isolate from surface soil sampled at an ancient copper smelter. Int J Syst Evol Microbiol 2021; 71:004769 [View Article]
    [Google Scholar]
  35. Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 1999; 46:327–338 [View Article] [PubMed]
    [Google Scholar]
  36. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Wiley; 1991 pp 115–175
    [Google Scholar]
  37. Davis KER, Joseph SJ, Janssen PH. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 2005; 71:826–834 [View Article] [PubMed]
    [Google Scholar]
  38. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  39. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  40. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010; 26:589–595 [View Article] [PubMed]
    [Google Scholar]
  41. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  43. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  44. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  45. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  46. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  47. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  48. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  49. R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2021 http://www. R-project.org
    [Google Scholar]
  50. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [View Article] [PubMed]
    [Google Scholar]
  51. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article] [PubMed]
    [Google Scholar]
  52. Foesel BU, Geppert A, Rohde M, Overmann J. Parviterribacter kavangonensis gen. nov., sp. nov. and Parviterribacter multiflagellatus sp. nov., novel members of Parviterribacteraceae fam. nov. within the order Solirubrobacterales, and emended descriptions of the classes Thermoleophilia and Rubrobacteria and their orders and families. Int J Syst Evol Microbiol 2016; 66:652–665 [View Article]
    [Google Scholar]
  53. Jin D, Kong X, Li H, Luo L, Zhuang X et al. Patulibacter brassicae sp. nov., isolated from rhizosphere soil of Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 2016; 66:5056–5060 [View Article] [PubMed]
    [Google Scholar]
  54. Singleton DR, Furlong MA, Peacock AD, White DC, Coleman DC et al. Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int J Syst Evol Microbiol 2003; 53:485–490 [View Article]
    [Google Scholar]
  55. Kim MK, Na J-R, Lee T-H, Im W-T, Soung N-K et al. Solirubrobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2007; 57:1453–1455 [View Article] [PubMed]
    [Google Scholar]
  56. An D-S, Wang L, Kim MS, Bae H-M, Lee S-T et al. Solirubrobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2011; 61:2606–2609 [View Article] [PubMed]
    [Google Scholar]
  57. Wei L, Ouyang S, Wang Y, Shen X, Zhang L. Solirubrobacter phytolaccae sp. nov., an endophytic bacterium isolated from roots of Phytolacca acinosa Roxb. Int J Syst Evol Microbiol 2014; 64:858–862 [View Article] [PubMed]
    [Google Scholar]
  58. Zhang L, Zhu L, Si M, Li C, Zhao L et al. Solirubrobacter taibaiensis sp. nov., isolated from a stem of Phytolacca acinosa Roxb. Antonie van Leeuwenhoek 2014; 106:279–285 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005508
Loading
/content/journal/ijsem/10.1099/ijsem.0.005508
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error