1887

Abstract

Six Gram-stain-positive, aerobic and irregular-rod-shaped actinobacteria (ZJ1313, ZJ1307, MC1495, Y192, 603 and X2025) were isolated from the Qinghai–Tibet Plateau of China and were characterized using a polyphasic taxonomic method. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the six new strains formed three distinct clusters within the genus , and strains ZJ1313 and ZJ1307 were most closely related to JCM 31492 (16S rRNA gene sequence similarity, 98.0 %), MC1495 and Y192 to 78 (98.5 %), and 603 and X2025 to JCM 14815 (97.6 %). The digital DNA–DNA hybridization values of strains ZJ1313, MC1495 and 603 among each other and with type strains of their closest relatives were all below the 70 % cut-off point, but values within each pair of new strains were all higher than the threshold. The major fatty acids of these strains were iso-C, C 8 or C 9. MK-8(H) was the predominant respiratory menaquinone and ʟʟ−2,6-diaminopimelic acid was the diagnostic diamino acid. All the strains shared diphosphatidylglycerol (predominant), phosphatidylglycerol, phosphatidylcholine and phosphatidylinositol as the common polar lipids, with minor difference in the types of unidentified phospholipids, glycolipids and lipids. The G+C contents based on genomic DNA of strains ZJ1313, MC1495 and 603 were 72.5, 72.1 and 73.2 mol%, respectively. The above results suggested that strain pairs ZJ1313/ZJ1307, MC1495/Y192 and 603/X2025 represent three new species of genus , for which the names sp. nov. (ZJ1313=GDMCC 4.177=KCTC 49537=JCM 34185), sp. nov. (MC1495=GDMCC 4.176=KCTC 49536=JCM 34307) and sp. nov. (603=CGMCC 4.7510=DSM 106494) are proposed accordingly.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005507
2022-10-07
2024-09-16
Loading full text...

Full text loading...

References

  1. Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1976; 26:58–65 [View Article]
    [Google Scholar]
  2. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  3. Zhang S, Wang X, Yang J, Lu S, Lai X-H et al. Nocardioides dongxiaopingii sp. nov., isolated from leaves of Lamiophlomis rotata on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2020; 70:3234–3240 [View Article] [PubMed]
    [Google Scholar]
  4. Liu J, Li F, Gao C-H, Han Y, Hao H et al. Nocardioides kandeliae sp. nov., an endophytic actinomycete isolated from leaves of Kandelia candel. Int J Syst Evol Microbiol 2017; 67:3888–3893 [View Article] [PubMed]
    [Google Scholar]
  5. Glaeser SP, McInroy JA, Busse H-J, Kämpfer P. Nocardioides zeae sp. nov., isolated from the stem of Zea mays. Int J Syst Evol Microbiol 2014; 64:2491–2496 [View Article] [PubMed]
    [Google Scholar]
  6. Lu L, Cao M, Wang D, Yuan K, Zhuang W et al. Nocardioides immobilis sp. nov., isolated from iron mine soil. Int J Syst Evol Microbiol 2017; 67:5230–5234 [View Article] [PubMed]
    [Google Scholar]
  7. Wang X, Jiang W-K, Cui M-D, Yang Z-G, Yu X et al. Nocardioides agrisoli sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2017; 67:3722–3727 [View Article] [PubMed]
    [Google Scholar]
  8. Singh H, Du J, Trinh H, Won K, Yang J-E et al. Nocardioides albidus sp. nov., an actinobacterium isolated from garden soil. Int J Syst Evol Microbiol 2016; 66:371–378 [View Article] [PubMed]
    [Google Scholar]
  9. Qu JH, Li XD, Li HF. Nocardioides taihuensis sp. nov., isolated from fresh water lake sediment. Int J Syst Evol Microbiol 2017; 67:3535–3539 [View Article] [PubMed]
    [Google Scholar]
  10. Wang S, Zhou Y, Zhang G. Nocardioides flavus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016; 66:5275–5280 [View Article] [PubMed]
    [Google Scholar]
  11. Wang X, Yang J, Lu S, Lai X-H, Jin D et al. Nocardioides houyundeii sp. nov., isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2018; 68:3874–3880 [View Article] [PubMed]
    [Google Scholar]
  12. Huang Y, Wang X, Yang J, Lu S, Lai X-H et al. Nocardioides yefusunii sp. nov., isolated from Equus kiang (Tibetan wild ass) faeces. Int J Syst Evol Microbiol 2019; 69:3629–3635 [View Article]
    [Google Scholar]
  13. Dong K, Lu S, Yang J, Pu J, Lai X-H et al. Nocardioides jishulii sp. nov.,isolated from faeces of Tibetan gazelle (Procapra picticaudata). Int J Syst Evol Microbiol 2020; 70:3665–3672 [View Article] [PubMed]
    [Google Scholar]
  14. Hamamura N, Arp DJ. Isolation and characterization of alkane-utilizing Nocardioides sp. strain CF8. FEMS Microbiol Lett 2000; 186:21–26 [View Article] [PubMed]
    [Google Scholar]
  15. Takagi K, Iwasaki A, Kamei I, Satsuma K, Yoshioka Y et al. Aerobic mineralization of hexachlorobenzene by newly isolated pentachloronitrobenzene-degrading Nocardioides sp. strain PD653. Appl Environ Microbiol 2009; 75:4452–4458 [View Article] [PubMed]
    [Google Scholar]
  16. Omura S, Tsuzuki K, Sunazuka T, Marui S, Toyoda H et al. Macrolides with gastrointestinal motor stimulating activity. J Med Chem 1987; 30:1941–1943 [View Article] [PubMed]
    [Google Scholar]
  17. Kubota NK, Ohta E, Ohta S, Koizumi F, Suzuki M et al. Piericidins C5 and C6: new 4-pyridinol compounds produced by Streptomyces sp. and Nocardioides sp. Bioorg Med Chem 2003; 11:4569–4575 [View Article] [PubMed]
    [Google Scholar]
  18. Gesheva V, Vasileva-Tonkova E. Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources. World J Microbiol Biotechnol 2012; 28:2069–2076 [View Article] [PubMed]
    [Google Scholar]
  19. Fujieda N, Satoh A, Tsuse N, Kano K, Ikeda T. 6-S-cysteinyl flavin mononucleotide-containing histamine dehydrogenase from Nocardioides simplex: molecular cloning, sequencing, overexpression, and characterization of redox centers of enzyme. Biochemistry 2004; 43:10800–10808 [View Article] [PubMed]
    [Google Scholar]
  20. Harris JK, De Groote MA, Sagel SD, Zemanick ET, Kapsner R et al. Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci USA 2007; 104:20529–20533 [View Article]
    [Google Scholar]
  21. Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. The Prokaryotes Berlin, Heidelberg: Springer-Verlag; 2014 pp 651–694 [View Article]
    [Google Scholar]
  22. Zhou S, Wang X, Wang J, Xu L. A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai–Tibetan Plateau. Quat Int 2006; 154–155:44–51 [View Article]
    [Google Scholar]
  23. Mackinnon JR. A biodiversity review of China: World Wide Fund for Nature (WWF) International WWF China Programme; 1996
    [Google Scholar]
  24. Li J, Lei W, Yang J, Lu S, Jin D et al. Aeromicrobium chenweiae sp. nov. and Aeromicrobium yanjiei sp. nov., isolated from Tibetan antelope (Pantholops hodgsonii) and Plateau pika (Ochotona curzoniae), respectively. Int J Syst Evol Microbiol 2020; 70:4683–4690 [View Article]
    [Google Scholar]
  25. Xiong J, Sun H, Peng F, Zhang H, Xue X et al. Characterizing changes in soil bacterial community structure in response to short-term warming. FEMS Microbiol Ecol 2014; 89:281–292 [View Article] [PubMed]
    [Google Scholar]
  26. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  30. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [View Article] [PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  33. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  34. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article]
    [Google Scholar]
  35. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  36. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  37. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  38. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  39. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22:1658–1659 [View Article] [PubMed]
    [Google Scholar]
  40. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  41. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [View Article] [PubMed]
    [Google Scholar]
  42. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article]
    [Google Scholar]
  43. Wu B, Liu F, Fang W, Yang T, Chen G-H et al. Microbial sulfur metabolism and environmental implications. Sci Total Environ 2021; 778:146085 [View Article]
    [Google Scholar]
  44. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  45. Eichhorn E, van der Ploeg JR, Leisinger T. Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems. J Bacteriol 2000; 182:2687–2695 [View Article] [PubMed]
    [Google Scholar]
  46. Pereira CT, Moutran A, Fessel M, Balan A. The sulfur/sulfonates transport systems in Xanthomonas citri pv. citri. BMC Genomics 2015; 16:524 [View Article] [PubMed]
    [Google Scholar]
  47. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  48. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  49. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  50. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  51. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  52. Sultanpuram VR, Mothe T, Mohammed F. Nocardioides solisilvae sp. nov., isolated from a forest soil. Antonie Van Leeuwenhoek 2015; 107:1599–1606 [View Article] [PubMed]
    [Google Scholar]
  53. Cheng Y, Jiao Y, Zhang S, Yang J, Lu S et al. Nocardioides dongkuii sp. nov. and Nocardioides lijunqiniae sp. nov., isolated from faeces of Tibetan antelope (Pantholops hodgsonii) and leaves of dandelion (Taraxacum officinale), respectively, on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  54. Park SC, Baik KS, Kim MS, Chun J, Seong CN. Nocardioides dokdonensis sp. nov., an actinomycete isolated from sand sediment. Int J Syst Evol Microbiol 2008; 58:2619–2623 [View Article] [PubMed]
    [Google Scholar]
  55. Zhao Y, Liu Q, Kang M-S, Jin F, Yu H et al. Nocardioides ungokensis sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2015; 65:4857–4862 [View Article] [PubMed]
    [Google Scholar]
  56. Kim HM, Choi DH, Hwang CY, Cho BC. Nocardioides salarius sp. nov., isolated from seawater enriched with zooplankton. Int J Syst Evol Microbiol 2008; 58:2056–2064 [View Article] [PubMed]
    [Google Scholar]
  57. Lee DW, Hyun CG, Lee SD. Nocardioides marinisabuli sp. nov., a novel actinobacterium isolated from beach sand. Int J Syst Evol Microbiol 2007; 57:2960–2963 [View Article] [PubMed]
    [Google Scholar]
  58. Zhang J, Ma Y, Yu H. Nocardioides lianchengensis sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 2012; 62:2698–2702 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005507
Loading
/content/journal/ijsem/10.1099/ijsem.0.005507
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error