1887

Abstract

A novel actinomycete strain, named LHW52907, was isolated from a marine sponge () collected in the South China Sea. The strain developed branched mycelia without fragmentation and short spore chains in hook-and- spiral form with wrinkled surfaces, bearing no more 10 spores. The cell-wall hydrolysates contained -diaminopimelic acid as the diagnostic diamino acid. The sugars in whole-cell hydrolysates consisted of mannose, ribose, glucose, galactose and madurose. The major fatty acids of the strain were C, C and C 9. The predominant menaquinone was MK-9(H). The strain had the highest 16S rRNA gene sequence similarity of 99.72 % to DSM 43383. However, the average nucleotide identity and DNA–DNA hybridization values between them were 93.6 and 52.6 %, respectively, readily distinguishing them as two different species. The results indicate that strain LHW52907 represents a novel species of the genus , for which we propose the name sp. nov, with the type strain LHW52907 (=DSM 106571=CGMCC 4.7596).

Funding
This study was supported by the:
  • Postdoctoral Research Foundation of China (Award 2020M671163)
    • Principle Award Recipient: LinJiang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005506
2022-08-24
2024-10-03
Loading full text...

Full text loading...

References

  1. Lechevalier H, Lechevalier MP. A critical evaluation of the genera of aerobic actinomycetes. In Prauser H. eds The Actinomycetales: The Jena International Symposium on Taxonomy. Germany: Gustav Fischer Verlag Germany: Gustav Fischer Verlag; 1970 pp 393–405
    [Google Scholar]
  2. Zhang Z, Kudo T, Nakajima Y, Wang Y. Clarification of the relationship between the members of the family Thermomonosporaceae on the basis of 16S rDNA, 16S-23S rRNA internal transcribed spacer and 23S rDNA sequences and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:373–383 [View Article] [PubMed]
    [Google Scholar]
  3. Tamura T, Ishida Y, Nozawa Y, Otoguro M, Suzuki K. Transfer of Actinomadura spadix Nonomura and Ohara 1971 to Actinoallomurus spadix gen. nov., comb. nov., and description of Actinoallomurus amamiensis sp. nov., Actinoallomurus caesius sp. nov., Actinoallomurus coprocola sp. nov., Actinoallomurus fulvus sp. nov., Actinoallomurus iriomotensis sp. nov., Actinoallomurus luridus sp. nov., Actinoallomurus purpureus sp. nov. and Actinoallomurus yoronensis sp. nov. Int J Syst Evol Microbiol 2009; 59:1867–1874 [View Article]
    [Google Scholar]
  4. Iinuma S, Yokota A, Hasegawa T, Kanamaru T. Actinocorallia gen. nov., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1994; 44:230–234 [View Article]
    [Google Scholar]
  5. Couch JN. Some new genera and species of the actinoplanaceae. J Elisha Mitchell Sci Soc 1963; 79:53–70
    [Google Scholar]
  6. Henssen A. Morphology and system of thermophilic Actinomycetes. Arch Mikrobiol 1957; 26:373–414 [View Article] [PubMed]
    [Google Scholar]
  7. Ruan J. Bergey’s Manual of Systematic Bacteriology (second edition) Volume 5 and the study of Actinomycetes systematic in China. Wei Sheng Wu Xue Bao 2013; 53:521–530
    [Google Scholar]
  8. Kroppenstedt RM, Stackebrandt E, Goodfellow M. Taxonomic revision of the actinomycete genera Actinomadura and Microtetraspora. Syst Appl Microbiol 1990; 13:148–160 [View Article]
    [Google Scholar]
  9. Ding T, Yang LJ, Zhang WD, Shen YH. The secondary metabolites of rare actinomycetes: chemistry and bioactivity. RSC Adv 2019; 9:21964–21988 [View Article] [PubMed]
    [Google Scholar]
  10. Kim B-Y, Stach JEM, Weon H-Y, Kwon S-W, Goodfellow M. Dactylosporangium luridum sp. nov., Dactylosporangium luteum sp. nov. and Dactylosporangium salmoneum sp. nov., nom. rev., isolated from soil. Int J Syst Evol Microbiol 2010; 60:1813–1823 [View Article] [PubMed]
    [Google Scholar]
  11. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  12. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145 [View Article] [PubMed]
    [Google Scholar]
  13. Selman AWR, David G. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967 p 1028
    [Google Scholar]
  14. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color-Name Charts I illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  15. Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 1982; 43:777–780 [View Article] [PubMed]
    [Google Scholar]
  16. Athalye M, Goodfellow M, Lacey J, White RP. Numerical classification of Actinomadura and Nocardiopsis. Int J Syst Bacteriol 1985; 35:86–98 [View Article]
    [Google Scholar]
  17. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article]
    [Google Scholar]
  18. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  19. Williams ST, Cross T. Actinomycetes. In Booth C. eds In Methods in Microbiology vol 4 London: Academic Press; 1971 pp 295–334
    [Google Scholar]
  20. Goodfellow M. Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 1971; 69:33–80 [View Article] [PubMed]
    [Google Scholar]
  21. Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T. Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 1999; 49 Pt 4:1761–1767 [View Article] [PubMed]
    [Google Scholar]
  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  28. Pospiech A, Neumann B. A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet 1995; 11:217–218 [View Article] [PubMed]
    [Google Scholar]
  29. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article] [PubMed]
    [Google Scholar]
  31. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  32. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. eds Actinomycete Taxonomy Special Publication vol 6 Arlington: Society of Industrial Microbiology; 1980 pp 227–291
    [Google Scholar]
  33. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  35. Sasser Myron. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl. 1990; 20:1–6
    [Google Scholar]
  36. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  37. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  39. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  40. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  41. Trujillo ME, Goodfellow M. Actinomadura. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons Inc; 2015 pp 1–32 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005506
Loading
/content/journal/ijsem/10.1099/ijsem.0.005506
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error