1887

Abstract

Methanogenic archaea are a diverse, polyphyletic group of strictly anaerobic prokaryotes capable of producing methane as their primary metabolic product. It has been over three decades since minimal standards for their taxonomic description have been proposed. In light of advancements in technology and amendments in systematic microbiology, revision of the older criteria for taxonomic description is essential. Most of the previously recommended minimum standards regarding phenotypic characterization of pure cultures are maintained. Electron microscopy and chemotaxonomic methods like whole-cell protein and lipid analysis are desirable but not required. Because of advancements in DNA sequencing technologies, obtaining a complete or draft whole genome sequence for type strains and its deposition in a public database are now mandatory. Genomic data should be used for rigorous comparison to close relatives using overall genome related indices such as average nucleotide identity and digital DNA–DNA hybridization. Phylogenetic analysis of the 16S rRNA gene is also required and can be supplemented by phylogenies of the gene and phylogenomic analysis using multiple conserved, single-copy marker genes. Additionally, it is now established that culture purity is not essential for studying prokaryotes, and description of methanogenic taxa using single-cell or metagenomics along with other appropriate criteria is a viable alternative. The revisions to the minimal criteria proposed here by the members of the Subcommittee on the Taxonomy of Methanogenic Archaea of the International Committee on Systematics of Prokaryotes should allow for rigorous yet practical taxonomic description of these important and diverse microbes.

Funding
This study was supported by the:
  • National Research Foundation of Korea (Award MSIT 2021R1A2C3004015)
    • Principle Award Recipient: RheeSung-Keun
  • Japan Society for the Promotion of Science (Award 18H05295)
    • Principle Award Recipient: KamagataYoichi
  • Japan Society for the Promotion of Science (Award 19H01005)
    • Principle Award Recipient: ImachiHiroyuki
  • U.S. Department of Energy (Award DE-FG02-95ER20198)
    • Principle Award Recipient: FerryJames G.
  • Department of Biotechnology, Govt. of India (Award BT/PR13969/BCE/8/1142/2015)
    • Principle Award Recipient: PrakashOm
  • Department of Biotechnology, Govt. of India (Award BT/Coord.II/01/03/2016)
    • Principle Award Recipient: PrakashOm
  • United States National Science Foundation (Award DEB-1557042)
    • Principle Award Recipient: DodsworthJeremy A.

Erratum

An erratum has been published for this content:
Corrigendum: Proposed minimal standards for description of methanogenic archaea
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005500
2023-04-25
2024-05-03
Loading full text...

Full text loading...

References

  1. Enzmann F, Mayer F, Rother M, Holtmann D. Methanogens: biochemical background and biotechnological applications. AMB Express 2018; 8:1 [View Article] [PubMed]
    [Google Scholar]
  2. Kurth JM, Op den Camp HJM, Welte CU. Several ways one goal-methanogenesis from unconventional substrates. Appl Microbiol Biotechnol 2020; 104:6839–6854 [View Article] [PubMed]
    [Google Scholar]
  3. Bižić M, Klintzsch T, Ionescu D, Hindiyeh MY, Günthel M et al. Aquatic and terrestrial cyanobacteria produce methane. Sci Adv 2020; 6:eaax5343 [View Article] [PubMed]
    [Google Scholar]
  4. Lyu Z, Shao N, Akinyemi T, Whitman WB. Primer: methanogenesis. Curr Biol 2018; 28:R727–R732 [View Article]
    [Google Scholar]
  5. Welte CU. Revival of archaeal methane microbiology. mSystems 2018; 3:17 [View Article]
    [Google Scholar]
  6. Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH et al. An evolving view of methane metabolism in the archaea. Nat Rev Microbiol 2019; 17:219–232 [View Article]
    [Google Scholar]
  7. Jabłoński S, Rodowicz P, Łukaszewicz M. Methanogenic archaea database containing physiological and biochemical characteristics. Int J Syst Evol Microbiol 2015; 65:1360–1368 [View Article]
    [Google Scholar]
  8. Parte AC. LPSN - List of Prokaryotic Names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  9. Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Davín AA et al. A standardized archaeal taxonomy for the genome taxonomy atabase. Nat Microbiol 2021; 6:946–959 [View Article]
    [Google Scholar]
  10. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 2015; 350:434–438 [View Article]
    [Google Scholar]
  11. Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota . Nat Microbiol 2016; 1:16170 [View Article] [PubMed]
    [Google Scholar]
  12. McKay LJ, Dlakić M, Fields MW, Delmont TO, Eren AM et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota . Nat Microbiol 2019; 4:614–622 [View Article] [PubMed]
    [Google Scholar]
  13. Boone DR, Whitman WB. Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 1988; 38:212–219 [View Article]
    [Google Scholar]
  14. Ollivier B, de Macario EC. Subcommittee on the taxonomy of methanoarchaea:Minutes of the closed meeting, 19 May 2003, Washington, DC, USA. Int J Syst Evol Microbiol 2004; 54:289 [View Article]
    [Google Scholar]
  15. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains archaea, bacteria, and ucarya. Proc Natl Acad Sci USA 1990; 87:4576–4579 [View Article] [PubMed]
    [Google Scholar]
  16. Prakash O, Jangid K, Shouche YS. Carl woese: from biophysics to evolutionary microbiology. Indian J Microbiol 2013; 53:247–252 [View Article]
    [Google Scholar]
  17. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017; 541:353–358 [View Article]
    [Google Scholar]
  18. Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 2020; 577:519–525 [View Article]
    [Google Scholar]
  19. Parker CT, Parker BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article]
    [Google Scholar]
  20. Bellack A, Huber H, Rachel R, Wanner G, Wirth R. Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell-cell contacts. Int J Syst Evol Microbiol 2011; 61:1239–1245 [View Article]
    [Google Scholar]
  21. Kitamura K, Fujita T, Akada S, Tonouchi A. Methanobacterium kanagiense sp. nov., a hydrogenotrophic methanogen, isolated from rice-field soil. Int J Syst Evol Microbiol 2011; 61:1246–1252 [View Article] [PubMed]
    [Google Scholar]
  22. Doddema HJ, Vogels GD. Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 1978; 36:752–754 [View Article] [PubMed]
    [Google Scholar]
  23. Zehnder AJB, Huser BA, Brock TD, Wuhrmann K. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol 1980; 124:1–11 [View Article] [PubMed]
    [Google Scholar]
  24. Kamagata Y, Mikami E. Isolation and characterization of a novel thermophilic Methanosaeta train . Int J Syst Bacteriol 1991; 41:191–196 [View Article]
    [Google Scholar]
  25. Mori K, Iino T, Suzuki K-I, Yamaguchi K, Kamagata Y. Aceticlastic and NaCl-requiring methanogen “Methanosaeta pelagica” sp. nov., isolated from marine tidal flat sediment. Appl Environ Microbiol 2012; 78:3416–3423 [View Article] [PubMed]
    [Google Scholar]
  26. Borrel G, O’Toole PW, Harris HMB, Peyret P, Brugère J-F et al. Phylogenomic data support a seventh order of Methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol 2013; 5:1769–1780 [View Article] [PubMed]
    [Google Scholar]
  27. Lambrecht J, Cichocki N, Hübschmann T, Koch C, Harms H et al. Flow cytometric quantification, sorting and sequencing of methanogenic archaea based on F420 autofluorescence. Microb Cell Fact 2017; 16:180 [View Article] [PubMed]
    [Google Scholar]
  28. Rother M, Metcalf WW. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA 2004; 101:16929–16934 [View Article] [PubMed]
    [Google Scholar]
  29. Jeanthon C, L’Haridon S, Reysenbach AL, Corre E, Vernet M et al. Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 1999; 49 Pt 2:583–589 [View Article] [PubMed]
    [Google Scholar]
  30. Mah RA, Smith MR, Baresi L. Studies on an acetate-fermenting strain of Methanosarcina . Appl Environ Microbiol 1978; 35:1174–1184 [View Article] [PubMed]
    [Google Scholar]
  31. Dean JA. Lange’s Handbook of Chemistry New York: McGraw Hill Inc; 1992
    [Google Scholar]
  32. Powell GE. Interpreting gas kinetics of batch cultures. Biotechnol Lett 1983; 5:437–440 [View Article]
    [Google Scholar]
  33. Watkins AJ, Roussel EG, Webster G, Parkes RJ, Sass H. Choline and N,N-dimethylethanolamine as direct substrates for methanogens. Appl Environ Microbiol 2012; 78:8298–8303 [View Article] [PubMed]
    [Google Scholar]
  34. Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H et al. Methane production from coal by a single methanogen. Science 2016; 354:222–225 [View Article] [PubMed]
    [Google Scholar]
  35. Kurth JM, Op den Camp HJM, Welte CU. Several ways one goal-methanogenesis from unconventional substrates. Appl Microbiol Biotechnol 2020; 104:6839–6854 [View Article] [PubMed]
    [Google Scholar]
  36. Oremland RS, Boone DR. NOTES: Methanolobus taylorii sp. nov., a new methylotrophic, estuarine methanogen. Int J Syst Bacteriol 1994; 44:573–575 [View Article]
    [Google Scholar]
  37. Blanchard JS. Enzyme purification and related techniques (Part C). In Jakoby WB. eds Methods in Enzymology vol 104 Academic Press; 1984 pp 404–414
    [Google Scholar]
  38. Renganathan M, Bose S. Inhibition of photosystem II activity by Cu++ ion. choice of buffer and reagent is critical. Photosynth Res 1990; 23:95–99 [View Article] [PubMed]
    [Google Scholar]
  39. Ferreira CMH, Pinto ISS, Soares EV, Soares H. (Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review. RSC Adv 2015; 5:30989–31003 [View Article]
    [Google Scholar]
  40. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA. Brock Biology of Microorganisms, 13th edn. New York: Prentice Hall International, Inc; 2012
    [Google Scholar]
  41. Bräuer SL, Cadillo-Quiroz H, Ward RJ, Yavitt JB, Zinder SH. Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol 2011; 61:45–52 [View Article]
    [Google Scholar]
  42. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260–296 [View Article]
    [Google Scholar]
  43. Ladapo J, Whitman WB. Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis . Proc Natl Acad Sci USA 1990; 87:5598–5602 [View Article]
    [Google Scholar]
  44. Dridi B, Khelaifia S, Fardeau ML, Ollivier B, Drancourt M. Tungsten-enhanced growth of Methanosphaera stadtmanae . BMC Res Notes 2012; 5:238 [View Article]
    [Google Scholar]
  45. Liu Y, Beer LL, Whitman WB. Methanogens: a window into ancient sulfur metabolism. Trends Microbiol 2012; 20:251–258 [View Article]
    [Google Scholar]
  46. Leigh JA. Nitrogen fixation in methanogens: the archaeal perspective. Curr Issues Mol Biol 2000; 2:125–131 [View Article] [PubMed]
    [Google Scholar]
  47. Chen S-C, Chen M-F, Lai M-C, Weng C-Y, Wu S-Y et al. Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano. Int J Syst Evol Microbiol 2015; 65:2141–2147 [View Article] [PubMed]
    [Google Scholar]
  48. Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea. J Antimicrob Chemother 2011; 66:2038–2044 [View Article] [PubMed]
    [Google Scholar]
  49. Khelaifia S, Brunel JM, Raoult D, Drancourt M. Hydrophobicity of imidazole derivatives correlates with improved activity against human methanogenic archaea. Int J Antimicrob Agents 2013; 41:544–547 [View Article] [PubMed]
    [Google Scholar]
  50. Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren E et al. Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother 2010; 65:601–604 [View Article] [PubMed]
    [Google Scholar]
  51. Wagner T, Huang G, Ermler U, Shima S. How [Fe]-Hydrogenase from Methanothermobacter is protected against light and oxidative stress. Angew Chem Int Ed Engl 2018; 57:15056–15059 [View Article] [PubMed]
    [Google Scholar]
  52. Kiener A, Leisinger T. Oxygen sensitivity of methanogenic bacteria. Syst Appl Microbiol 1983; 4:305–312 [View Article] [PubMed]
    [Google Scholar]
  53. Fetzer S, Bak F, Conrad R. Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol Ecol 1993; 12:107–115 [View Article]
    [Google Scholar]
  54. Liu CT, Miyaki T, Aono T, Oyaizu H. Evaluation of methanogenic strains and their ability to endure aeration and water stress. Curr Microbiol 2008; 56:214–218 [View Article] [PubMed]
    [Google Scholar]
  55. Angel R, Matthies D, Conrad R. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One 2011; 6:e20453 [View Article] [PubMed]
    [Google Scholar]
  56. Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 2012; 6:847–862 [View Article] [PubMed]
    [Google Scholar]
  57. Lyu Z, Lu Y. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J 2018; 12:411–423 [View Article] [PubMed]
    [Google Scholar]
  58. Horne AJ, Lessner DJ. Assessment of the oxidant tolerance of Methanosarcina acetivorans . FEMS Microbiol Lett 2013; 343:13–19 [View Article] [PubMed]
    [Google Scholar]
  59. Brioukhanov AL, Netrusov AI. The positive effect of exogenous hemin on a resistance of strict anaerobic archaeon Methanobrevibacter arboriphilus to oxidative stresses. Curr Microbiol 2012; 65:375–383 [View Article] [PubMed]
    [Google Scholar]
  60. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 2017; 3:e000132 [View Article] [PubMed]
    [Google Scholar]
  61. Derakhshani H, Bernier SP, Marko VA, Surette MG. Completion of draft bacterial genomes by long-read sequencing of synthetic genomic pools. BMC Genomics 2020; 21:519 [View Article] [PubMed]
    [Google Scholar]
  62. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  63. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  64. Dziewit L, Pyzik A, Romaniuk K, Sobczak A, Szczesny P et al. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities. Front Microbiol 2015; 6:694 [View Article] [PubMed]
    [Google Scholar]
  65. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  66. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  67. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  68. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  69. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [View Article]
    [Google Scholar]
  70. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article]
    [Google Scholar]
  71. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T et al. Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol 2005; 3:733–739 [View Article] [PubMed]
    [Google Scholar]
  72. Shimizu S, Ueno A, Naganuma T, Kaneko K. Methanosarcina subterranea sp. nov., a methanogenic archaeon isolated from a deep subsurface diatomaceous shale formation. Int J Syst Evol Microbiol 2015; 65:1167–1171 [View Article] [PubMed]
    [Google Scholar]
  73. Kerepesi C, Bánky D, Grolmusz V. AmphoraNet: the webserver implementation of the AMPHORA2 metagenomic workflow suite. Gene 2014; 533:538–540 [View Article] [PubMed]
    [Google Scholar]
  74. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 2020; 38:1079–1086 [View Article] [PubMed]
    [Google Scholar]
  75. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  76. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBase: The United States Department of Energy systems biology knowledgebase. Nat Biotechnol 2018; 36:566–569 [View Article] [PubMed]
    [Google Scholar]
  77. Friedrich MW. Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzymol 2005; 397:428–442 [View Article] [PubMed]
    [Google Scholar]
  78. Shao N, Akinyemi TS, Whitman WB et al. Methanocorpusculum . In Trujillo ME, Dedysh S, DeVos P, Hedlund BP, Kämpfer P. eds Bergey’s Manual of Systematics of Archaea and Bacteria 2021 [View Article]
    [Google Scholar]
  79. Sorokin DY, Abbas B, Merkel AY, Rijpstra WIC, Damsté JSS et al. Methanosalsum natronophilum sp. nov., and Methanocalculus alkaliphilus sp. nov., haloalkaliphilic methanogens from hypersaline soda lakes. Int J Syst Evol Microbiol 2015; 65:3739–3745 [View Article] [PubMed]
    [Google Scholar]
  80. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250:4007–4021 [PubMed]
    [Google Scholar]
  81. Krader P, Emerson D. Identification of archaea and some extremophilic bacteria using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Extremophiles 2004; 8:259–268 [View Article] [PubMed]
    [Google Scholar]
  82. Dridi B, Raoult D, Drancourt M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of Archaea: towards the universal identification of living organisms. APMIS 2012; 120:85–91 [View Article] [PubMed]
    [Google Scholar]
  83. Shih C-J, Chen S-C, Weng C-Y, Lai M-C, Yang Y-L. Rapid identification of haloarchaea and methanoarchaea using the matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Sci Rep 2015; 5:1–11 [View Article] [PubMed]
    [Google Scholar]
  84. Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 2013; 26:547–603 [View Article] [PubMed]
    [Google Scholar]
  85. Kates M, Kushner DJ, Matheson AT. The Biochemistry of Archaea (Archaebacteria) Amsterdam: Elsevier Science Publishers; 1993
    [Google Scholar]
  86. Mangelsdorf K, Karger C, Zink K-G. eds Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbons and Lipid Microbiology Switzerland: Springer; 2019 pp 445–474
    [Google Scholar]
  87. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  88. Wagner D, Schirmack J, Ganzert L, Morozova D, Mangelsdorf K. Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. Int J Syst Evol Microbiol 2013; 63:2986–2991 [View Article]
    [Google Scholar]
  89. Ganzert L, Schirmack J, Alawi M, Mangelsdorf K, Sand W et al. Methanosarcina spelaei sp. nov., a methanogenic archaeon isolated from a floating biofilm of a subsurface sulphurous lake. Int J Syst Evol Microbiol 2014; 64:3478–3484 [View Article]
    [Google Scholar]
  90. Schirmack J, Mangelsdorf K, Ganzert L, Sand W, Hillebrand-Voiculescu A et al. Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. Int J Syst Evol Microbiol 2014; 64:522–527 [View Article]
    [Google Scholar]
  91. Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M et al. Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata . Microbes Environ 2013; 28:244–250 [View Article]
    [Google Scholar]
  92. Murray RGE, Schleifer KH. Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 1994; 44:174–176 [View Article] [PubMed]
    [Google Scholar]
  93. Murray RGE, Stackebrandt E. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 1995; 45:186–187 [View Article] [PubMed]
    [Google Scholar]
  94. Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat Microbiol 2020; 5:987–994 [View Article] [PubMed]
    [Google Scholar]
  95. Huber R, Burggraf S, Mayer T, Barns SM, Rossnagel P et al. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 1995; 376:57–58 [View Article] [PubMed]
    [Google Scholar]
  96. Hamilton-Brehm SD, Vishnivetskaya TA, Allman SL, Mielenz JR, Elkins JG. Anaerobic high-throughput cultivation method for isolation of thermophiles using biomass-derived substrates. Methods Mol Biol 2012; 908:153–168 [View Article] [PubMed]
    [Google Scholar]
  97. Amann R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 2008; 6:339–348 [View Article] [PubMed]
    [Google Scholar]
  98. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 2017; 35:725–731 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005500
Loading
/content/journal/ijsem/10.1099/ijsem.0.005500
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error