1887

Abstract

Two strains isolated from a sample of activated sludge that was obtained from a seawater-based wastewater treatment plant on the southeastern Mediterranean coast of Spain have been characterized to achieve their taxonomic classification, since preliminary data suggested they could represent novel taxa. Given the uniqueness of this habitat, as this sort of plants are rare in the world and this one used seawater to process an influent containing intermediate products from amoxicillin synthesis, we also explored their ecology and the annotations of their genomic sequences. Analysis of their 16S rRNA gene sequences revealed that one of them, which was orange-pigmented, was distantly related to (family ) and to other representatives of neighbouring families in the order (class ) by 88–89 % similarities; while the other strain, which was yellow-pigmented, was a putative new species of (family , order , class ) with as closest relative (97.3 % 16S rRNA sequence similarity to its type strain). Following a polyphasic taxonomic approach, including a genome-based phylogenetic analysis and a thorough phenotypic characterization, we propose the following novel taxa: gen. nov., sp. nov. (whose type strain is AS29M-1=CECT 30217=LMG 32344), fam. nov. (whose type genus is ), and sp. nov. (whose type strain is AS29M=CECT 30171=LMG 32343).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005498
2022-08-22
2024-05-01
Loading full text...

Full text loading...

References

  1. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  2. Bowman JP. Out from the shadows - resolution of the taxonomy of the family Cryomorphaceae. Front Microbiol 2020; 11:795 [View Article]
    [Google Scholar]
  3. Oren A, Garrity GM. Validation list no.199. list of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2021; 71:4773 [View Article]
    [Google Scholar]
  4. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  5. Sánchez O, Garrido L, Forn I, Massana R, Maldonado MI et al. Molecular characterization of activated sludge from a seawater-processing wastewater treatment plant. Microb Biotechnol 2011; 4:628–642 [View Article] [PubMed]
    [Google Scholar]
  6. Sánchez O, Ferrera I, González JM, Mas J. Assessing bacterial diversity in a seawater-processing wastewater treatment plant by 454-pyrosequencing of the 16S rRNA and amoA genes. Microb Biotechnol 2013; 6:435–442 [View Article] [PubMed]
    [Google Scholar]
  7. Christensen P. Lysobacter. In In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley and Sons; 2015 [View Article]
    [Google Scholar]
  8. Arahal DR, Sánchez E, Macián MC, Garay E. Value of recN sequences for species identification and as a phylogenetic marker within the family “Leuconostocaceae.”. Int Microbiol 2008; 11:33–39 [PubMed]
    [Google Scholar]
  9. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  10. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  11. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  12. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article] [PubMed]
    [Google Scholar]
  13. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  14. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  15. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using aubsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  16. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  17. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  18. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: p-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  19. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 2021; 7:000685 [View Article] [PubMed]
    [Google Scholar]
  20. Munoz R, Teeling H, Amann R, Rosselló-Móra R. Ancestry and adaptive radiation of Bacteroidetes as assessed by comparative genomics. Syst Appl Microbiol 2020; 43:126065 [View Article] [PubMed]
    [Google Scholar]
  21. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  22. Tanaka T, Kawasaki K, Daimon S, Kitagawa W, Yamamoto K et al. A hidden pitfall in the preparation of agar media undermines microorganism cultivability. Appl Environ Microbiol 2014; 80:7659–7666 [View Article] [PubMed]
    [Google Scholar]
  23. Bernardet JP, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article]
    [Google Scholar]
  24. Lucena T, Sanz-Sáez I, Arahal DR, Acinas SG, Sánchez O et al. Mesonia oceanica sp. nov., isolated from oceans during the Tara oceans expedition, with a preference for mesopelagic waters. Int J Syst Evol Microbiol 2020; 70:4329–4338 [View Article] [PubMed]
    [Google Scholar]
  25. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. eds The Prokaryotes New York: Springer Verlag; 1981 pp 1352–1394
    [Google Scholar]
  26. Sasser M. Technical Note 101: Identification of bacteria by gas chromatography of cellular fatty acids. MIDI; 1990
  27. MIDI Sherlock Microbial Identification System Operating Manual, version 6.1. Newark, DE: MIDI Inc; 2008
    [Google Scholar]
  28. Wiese J, Saha M, Wenzel-Storjohann A, Weinberger F, Schmaljohann R et al. Vicingus serpentipes gen. nov., sp. nov., a new member of the Flavobacteriales from the North Sea. Int J Syst Evol Microbiol 2018; 68:333–340 [View Article]
    [Google Scholar]
  29. Hügler M, Gärtner A, Imhoff JF. Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiol Ecol 2010; 73:526–537 [View Article] [PubMed]
    [Google Scholar]
  30. Sylvan JB, Toner BM, Edwards KJ. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides. mBio 2012; 3:e00279–11 [View Article] [PubMed]
    [Google Scholar]
  31. Tian F, Yu Y, Chen B, Li H, Yao Y-F et al. Bacterial, archaeal and eukaryotic diversity in arctic sediment as revealed by 16S rRNA and 18S rRNA gene clone libraries analysis. Polar Biol 2009; 32:93–103 [View Article]
    [Google Scholar]
  32. Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data 2018; 5:170203 [View Article]
    [Google Scholar]
  33. DeLong EF, Franks DG, Alldredge AL. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 1993; 38:924–934 [View Article]
    [Google Scholar]
  34. Zhang XF, Wang HH, Sun XY, Pan CM. Lysobacter zhanggongensis sp. nov. isolated from a pit mud. Curr Microbiol 2017; 74:1389–1393 [View Article]
    [Google Scholar]
  35. Alberti A, Poulain J, Engelen S, Labadie K, Romac S et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci Data 2017; 4:170093 [View Article]
    [Google Scholar]
  36. Duarte CM. Seafaring in the 21st century: the malaspina 2010 circumnavigation expedition. Limnol Oceanogr Bull 2015; 24:11–14 [View Article]
    [Google Scholar]
  37. McIlroy SJ, Saunders AM, Albertsen M, Nierychlo M, McIlroy B et al. MiDAS: the field guide to the microbes of activated sludge. Database 2015; 2015:bav062 [View Article]
    [Google Scholar]
  38. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article]
    [Google Scholar]
  39. Gui X, Wu S, Huang F, Wang Y, He R et al. Acidiluteibacter ferrifornacis gen. nov., sp. nov., a new member of the Flavobacteriales from Tielu Harbour, Hainan, PR China. Int J Syst Evol Microbiol 2020; 70:5812–5817 [View Article]
    [Google Scholar]
  40. Bowman JP, Nichols CM, Gibson JAE. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel Flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 2003; 53:1343–1355 [View Article]
    [Google Scholar]
  41. Shi M-J, Han J-R, Zhang H, Xie Z-H, Du Z-J. Crocinitomix algicola sp. nov., isolated from Gracilaria blodgettii. Int J Syst Evol Microbiol 2017; 67:4020–4023 [View Article]
    [Google Scholar]
  42. Yang S-H, Seo H-S, Oh H-M, Kim S-J, Lee J-H et al. Brumimicrobium mesophilum sp. nov., isolated from a tidal flat sediment, and emended descriptions of the genus Brumimicrobium and Brumimicrobium glaciale. Int J Syst Evol Microbiol 2013; 63:1105–1110 [View Article]
    [Google Scholar]
  43. Zhang H, Han J-R, Shi M-J, Du Z-J, Chen G-J. Brumimicrobium aurantiacum sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2017; 67:3256–3260 [View Article]
    [Google Scholar]
  44. Luo HR, Chen ZY, Fei JJ, Du ZJ. Brumimicrobium salinarum sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2018; 68:3447–3451 [View Article]
    [Google Scholar]
  45. Lau KWK, Ren J, Wai NLM, Qian P-Y, Wong P-K et al. Lishizhenia caseinilytica gen. nov., sp. nov., a marine bacterium of the phylum Bacteroidetes. Int J Syst Evol Microbiol 2006; 56:2317–2322 [View Article]
    [Google Scholar]
  46. Chen L-P, Xu H-Y, Fu S-Z, Fan H-X, Zhou Y-G et al. Lishizhenia tianjinensis sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2009; 59:2400–2403 [View Article] [PubMed]
    [Google Scholar]
  47. Wang X-J, Xu L, Wang N, Sun H-M, Chen X-L et al. Putridiphycobacter roseus gen. nov., sp. nov., isolated from Antarctic rotten seaweed. Int J Syst Evol Microbiol 2020; 70:648–655 [View Article]
    [Google Scholar]
  48. Muramatsu Y, Takahashi M, Kamakura Y, Suzuki KI, Nakagawa Y. Salinirepens amamiensis gen. nov., sp. nov., a member of the family Cryomorphaceae isolated from seawater, and emended descriptions of the genera Fluviicola and Wandonia. Int J Syst Evol Microbiol 2012; 62:2235–2240 [View Article] [PubMed]
    [Google Scholar]
  49. Lu D-C, Xia J, Dunlap CA, Rooney AP, Du Z-J. Salibacter halophilus gen. nov., sp. nov., isolated from a saltern. Int J Syst Evol Microbiol 2017; 67:1784–1788 [View Article]
    [Google Scholar]
  50. Shahina M, Hameed A, Lin S-Y, Lai W-A, Liu Y-C et al. Luteibaculum oceani gen. nov., sp. nov., a carotenoid-producing, lipolytic bacterium isolated from surface seawater, and emended description of the genus Owenweeksia Lau et al. 2005. Int J Syst Evol Microbiol 2013; 63:4765–4770 [View Article]
    [Google Scholar]
  51. Luo G, Shi Z, Wang G. Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int J Syst Evol Microbiol 2012; 62:1659–1665 [View Article] [PubMed]
    [Google Scholar]
  52. Bae HS, Im WT, Lee ST. Lysobacter concretionis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket reactor. Int J Syst Evol Microbiol 2005; 55:1155–1161 [View Article] [PubMed]
    [Google Scholar]
  53. Choi H, Im WT, Park JS. Lysobacter spongiae sp. nov., isolated from spongin. J Microbiol 2018; 56:97–103 [View Article] [PubMed]
    [Google Scholar]
  54. Yassin AF, Chen W-M, Hupfer H, Siering C, Kroppenstedt RM et al. Lysobacter defluvii sp. nov., isolated from municipal solid waste. Int J Syst Evol Microbiol 2007; 57:1131–1136 [View Article] [PubMed]
    [Google Scholar]
  55. Romanenko LA, Uchino M, Tanaka N, Frolova GM, Mikhailov VV. Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int J Syst Evol Microbiol 2008; 58:370–374 [View Article] [PubMed]
    [Google Scholar]
  56. Jeong SE, Lee HJ, Jeon CO. Lysobacter aestuarii sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2016; 66:1346–1351 [View Article] [PubMed]
    [Google Scholar]
  57. Yoon J. Polyphasic characterization of Lysobacter maris sp. nov., a bacterium Isolated from seawater. Curr Microbiol 2016; 72:282–287 [View Article] [PubMed]
    [Google Scholar]
  58. Xu S, Li A, Zhang MX, Yao Q, Zhu H. Lysobacter penaei sp. nov., isolated from intestinal content of a pacific white shrimp (Penaeus vannamei). Int J Syst Evol Microbiol 2019; 71: [View Article] [PubMed]
    [Google Scholar]
  59. Xu L, Huang X-X, Fan D-L, Sun J-Q. Lysobacter alkalisoli sp. nov., a chitin-degrading strain isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2020; 70:1273–1281 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005498
Loading
/content/journal/ijsem/10.1099/ijsem.0.005498
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error