1887

Abstract

Two aerobic, Gram-stain-negative, motile, mesophilic, rod-shaped and catalase-positive bacterial strains designated AF9R3 and GN2-R2 were isolated from flowers collected in the Republic of Korea. Strain AF9R3 grew at 4–33 °C, pH 4.0–9.0 and with 0–1 % NaCl (w/v), and strain GN2-R2 grew at 10–33 °C, pH 4.0–9.0 and with 0–1 % NaCl (w/v). Phylogenetic analysis on the basis of 16S rRNA gene sequences indicated that strains AF9R3 and GN2-R2 belonged to the genera and , respectively, showing high sequence similarity to CY42W (99.4 %) and 6 NM-7 (98.0 %), respectively. Both strains contained summed feature 3 (C 7 and/or C 6) and C as the major fatty acids, and ubiquinone Q-8 as the predominant quinone. Strain AF9R3 had diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, and strain GN2-R2 comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid as the major polar lipids. Orthologous average nucleotide identity and digital DNA–DNA hybridization values of strain AF9R3 to its closest relative CY42W were 92.6 and 56.5 %, and those of strain GN2-R2 to its closest relative 6 NM-7 were 81.4 and 24.8 %. Based on genotypic and phenotypic data, strains AF9R3 and GN2-R2 are considered to represent novel species of the genus and , respectively, for which the names sp. nov. (type strain AF9R3=KACC 21258=NBRC 114510) and sp. nov. (type strain GN2-R2=KACC 21261=NBRC 114511) have been proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005487
2022-08-16
2024-04-30
Loading full text...

Full text loading...

References

  1. Garrity GM, Bell JA, Lilburn T. Family II. Oxalobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 2 New York: Springer; 2005 p 623
    [Google Scholar]
  2. Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M. The family Oxalobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes Berlin, Heidelberg: Springer; 2014 pp 919–974
    [Google Scholar]
  3. Hiraishi A, Shin YK, Sugiyama J. Proposal to reclassify Zoogloea ramigera IAM 12670 (P. R. dugan 115) as Duganella zoogloeoides gen. nov., sp. nov. Int J Syst Bacteriol 1997; 47:1249–1252 [View Article]
    [Google Scholar]
  4. Kämpfer P, Irgang R, Busse H-J, Poblete-Morales M, Kleinhagauer T et al. Pseudoduganella danionis sp. nov., isolated from zebrafish (Danio rerio). Int J Syst Evol Microbiol 2016; 66:4671–4675 [View Article]
    [Google Scholar]
  5. Jeon D, Kim IS, Choe H, Kim J-S, Lee SD. Duganella aceris sp. nov., isolated from tree sap and proposal to transfer of Rugamonas aquatica and Rugamonas rivuli to the genus Duganella as Duganella aquatica comb. nov., with the emended description of the genus Rugamonas. Arch Microbiol 2021; 203:2843–2852 [View Article] [PubMed]
    [Google Scholar]
  6. Raths R, Peta V, Bücking H. Duganella callida sp. nov., a novel addition to the Duganella genus, isolated from the soil of a cultivated maize field. Int J Syst Evol Microbiol 2021; 71:004599 [View Article] [PubMed]
    [Google Scholar]
  7. Lu H, Deng T, Liu F, Wang Y, Yang X et al. Duganella aquatilis sp nov., Duganella pernnla sp. nov. and Duganella levis sp. nov., isolated from subtropical streams in China. Int J Syst Evol Microbiol 2020; 70:3801–3808
    [Google Scholar]
  8. Zhang J, Kim Y-J, Hoang V-A, Lan Nguyen N, Wang C et al. Duganella ginsengisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 2016; 66:56–61 [View Article] [PubMed]
    [Google Scholar]
  9. Kämpfer P, Wellner S, Lohse K, Martin K, Lodders N. Duganella phyllosphaerae sp. nov., isolated from the leaf surface of Trifolium repens and proposal to reclassify Duganella violaceinigra into a novel genus as Pseudoduganella violceinigra gen. nov., comb. nov. Syst Appl Microbiol 2012; 35:19–23
    [Google Scholar]
  10. Madhaiyan M, Poonguzhali S, Saravanan VS, Hari K, Lee K-C et al. Duganella sacchari sp. nov. and Duganella radicis sp. nov., two novel species isolated from rhizosphere of field-grown sugar cane. Int J Syst Evol Microbiol 2013; 63:1126–1131 [View Article] [PubMed]
    [Google Scholar]
  11. La Scola B, Birtles RJ, Mallet MN, Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 1998; 36:2847–2852
    [Google Scholar]
  12. Rodríguez-Díaz M, Cerrone F, Sánchez-Peinado M, SantaCruz-Calvo L, Pozo C et al. Massilia umbonata sp. nov., able to accumulate poly-β-hydroxybutyrate, isolated from a sewage sludge compost-soil microcosm. Int J Syst Evol Microbiol 2014; 64:131–137 [View Article] [PubMed]
    [Google Scholar]
  13. Feng G-D, Yang S-Z, Li H-P, Zhu H-H. Massilia putida sp. nov., a dimethyl disulfide-producing bacterium isolated from wolfram mine tailing. Int J Syst Evol Microbiol 2016; 66:50–55 [View Article] [PubMed]
    [Google Scholar]
  14. Altankhuu K, Kim J. Massilia solisilvae sp. nov., Massilia terrae sp. nov. and Massilia agilis sp. nov., isolated from forest soil in South Korea by using a newly developed culture method. Int J Syst Evol Microbiol 2017; 67:3026–3032 [View Article] [PubMed]
    [Google Scholar]
  15. Chaudhary DK, Kim J. Massilia agri sp. nov., isolated from reclaimed grassland soil. Int J Syst Evol Microbiol 2017; 67:2696–2703 [View Article] [PubMed]
    [Google Scholar]
  16. Ren M, Li X, Zhang Y, Jin Y, Li S et al. Massilia armeniaca sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2018; 68:2319–2324 [View Article] [PubMed]
    [Google Scholar]
  17. Yang E, Zhao M, Li S, Wang Y, Sun L et al. Massilia atriviolacea sp. nov., a dark purple-pigmented bacterium isolated from soil. Int J Syst Evol Microbiol 2019; 69:2135–2141 [View Article] [PubMed]
    [Google Scholar]
  18. Raths R, Peta V, Bücking H. Massilia arenosa sp. nov., isolated from the soil of a cultivated maize field. Int J Syst Evol Microbiol 2020; 70:3912–3920 [View Article] [PubMed]
    [Google Scholar]
  19. Weon H-Y, Kim B-Y, Son J-A, Jang HB, Hong SK et al. Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:1422–1425 [View Article] [PubMed]
    [Google Scholar]
  20. Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse H-J. Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2015; 65:56–64 [View Article] [PubMed]
    [Google Scholar]
  21. Kämpfer P, Lodders N, Martin K, Falsen E. Massilia oculi sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2012; 62:364–369 [View Article] [PubMed]
    [Google Scholar]
  22. Gallego V, Sánchez-Porro C, García MT, Ventosa A. Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2006; 56:2449–2453 [View Article] [PubMed]
    [Google Scholar]
  23. Lu H, Deng T, Liu F, Wang Y, Yang X et al. Duganella lactea sp. nov., Duganella guangzhouensis sp. nov., Duganella flavida sp. nov. and Massilia rivuli sp. nov., isolated from a subtropical stream in PR China and proposal to reclassify Duganella ginsengisoli as Massilia ginsengisoli comb. nov. Int J Syst Evol Microbiol 2020; 70:4822–4830
    [Google Scholar]
  24. Holochová P, Mašlaňová I, Sedláček I, Švec P, Králová S et al. Description of Massilia rubra sp nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one massilia genomospecies isolated from antarctic streams, lakes and regoliths. Syst Appl Microbiol 2020; 43:
    [Google Scholar]
  25. Yu P, He X, Baer M, Beirinckx S, Tian T et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat Plants 2021; 7:481–499 [View Article] [PubMed]
    [Google Scholar]
  26. Yin C, Hulbert SH, Schroeder KL, Mavrodi O, Mavrodi D et al. Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Appl Environ Microbiol 2013; 79:7428–7438 [View Article] [PubMed]
    [Google Scholar]
  27. Dahal RH, Chaudhary DK, Kim J. Genome insight and description of antibiotic producing Massilia antibiotica sp. nov., isolated from oil-contaminated soil. Sci Rep 2021; 11:1–11
    [Google Scholar]
  28. Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans ADL. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 1997; 143(Pt 9):2983–2989 [View Article] [PubMed]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  33. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  34. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  36. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  37. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  39. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  40. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology(RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  41. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  42. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  43. Smibert R, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  44. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  45. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  46. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
  47. Singh H, Du J, Won K, Yang J-E, Yin C et al. Massilia arvi sp. nov., isolated from fallow-land soil previously cultivated with Brassica oleracea, and emended description of the genus Massilia. Int J Syst Evol Microbiol 2015; 65:3690–3696 [View Article] [PubMed]
    [Google Scholar]
  48. Kämpfer P, Lodders N, Martin K, Falsen E. Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int J Syst Evol Microbiol 2011; 61:1528–1533 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005487
Loading
/content/journal/ijsem/10.1099/ijsem.0.005487
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error