1887

Abstract

Strain Az39 of is a diazotrophic plant growth-promoting bacterium isolated in 1982 from the roots of wheat plants growing in Marcos Juárez, Córdoba, Argentina. It produces indole-3-acetic acid in the presence of -tryptophan as a precursor, grows at 20–38 °C (optimal 38 °C), and the cells are curved or spiral-shaped, with diameters ranging from 0.5–0.9 to 1.8–2.2 µm. They contain C, C and C 7/6 as the main fatty acids. Phylogenetic analysis of its 16S rRNA gene sequence confirmed that this strain belongs to the genus , showing a close relationship with Sp245, Sp7 and CC-Nfb-7. Housekeeping gene analysis revealed that Az39, together with five strains of the genus (Az19, REC3, BR 11975, MTCC4035 and MTCC4036), form a cluster apart from Sp245, Sp7 and CC-Nfb-7. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) between Az39 and the aforementioned type strains revealed values below 96 %, the circumscription limit for the species delineation (ANI: 95.3, 94.1 and 94.0 %; dDDH: 62.9, 56.3 and 55.6 %). Furthermore, a phylogeny evaluation of the core proteome, including 809 common shared proteins, showed an independent grouping of Az39, Az19, REC3, BR 11975, MTCC4035 and MTCC4036. The G+C content in the genomic DNA of these six strains varied from 68.3 to 68.5 %. Based on the combined phylogenetic, genomic and phenotypic characterization presented here, we consider that strain Az39, along with strains Az19, REC3, BR 11975, MTCC4035 and MTCC4036, are members of a new species, for which the name sp. nov. is proposed. The type strain is Az39 (=LBPCV39=BR 148428=CCCT 22.01).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005475
2022-08-01
2024-05-02
Loading full text...

Full text loading...

References

  1. Pfennig N, Truper HG. Higher taxa of the phototrophic bacteria. Int J Syst Bacteriol 1971; 21:17–18 [View Article]
    [Google Scholar]
  2. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  3. Tarrand JJ, Krieg NR, Döbereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 1978; 24:967–980 [View Article]
    [Google Scholar]
  4. Baldani JI, Krieg NR, Baldani VLD, Hartmann A, Döbereiner J. Azospirillum. In Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp 1–35 [View Article]
    [Google Scholar]
  5. Beijerinck MW. Über ein Spirillum, whelches freien stickstoff binden kann. Zentralbl Bakteriol Parasitenkd Infektionskr 1925; 63:535
    [Google Scholar]
  6. Lin SY, Hameed A, Shen FT, Liu YC, Hsu YH et al. Description of Niveispirillum fermenti gen.nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as 407 Nitrospirillum amazonense gen. nov. Antonie van Leeuwenhoek 2014; 105:1149–1162
    [Google Scholar]
  7. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  8. Okon Y, Labandera-Gonzalez CA. Agronomic applications of azospirillum: An evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 1994; 26:1591–1601 [View Article]
    [Google Scholar]
  9. Cassán F, Diaz-Zorita M. Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 2016; 103:117–130 [View Article]
    [Google Scholar]
  10. Rodríguez Cáceres EA, di Ciocco CA, Carletti SM. 25 años de investigación de Azospirillum brasilense AZ 39 en Argentina. In Cassán FD, García deSalamone I. eds Azospirillum Sp.: Cell Physiology, Plant Interactions and Agronomic Research in Argentina I International Workshop on Azospirillum: Cell Physiology, Plant Response and Agronomic Research, 1st ed. Argentina: Asociación Argentina de Microbiología; 2008 pp 179–187
    [Google Scholar]
  11. Díaz-Zorita M, Fernández-Canigia MV. Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 2009; 45:3–11 [View Article]
    [Google Scholar]
  12. Cassán F, Coniglio A, López G, Molina R, Nievas S et al. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol Fertil Soils 2020; 56:461–479 [View Article]
    [Google Scholar]
  13. Rivera D, Revale S, Molina R, Gualpa J, Puente M et al. Complete Genome Sequence of the Model Rhizosphere Strain Azospirillum brasilense Az39, Successfully Applied in Agriculture. Genome Announc 2014 2014 Jul-Aug; 2(4):; 2:e00683-14 [View Article]
    [Google Scholar]
  14. Rivera D, Mora V, Lopez G, Rosas S, Spaepen S et al. New insights into indole-3-acetic acid metabolism in Azospirillum brasilense. J Appl Microbiol 2018; 125:1774–1785 [View Article] [PubMed]
    [Google Scholar]
  15. Molina R, López G, Rodríguez B, Rosas S, Mora V et al. Correction to: evaluation of growth and motility in non-photosynthetic Azospirillum brasilense exposed to red, blue, and white light. Arch Microbiol 2020; 202:1193–1201 [View Article] [PubMed]
    [Google Scholar]
  16. Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA et al. Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 2007; 75:1143–1150 [View Article] [PubMed]
    [Google Scholar]
  17. Cassán F, Maiale S, Masciarelli O, Vidal A, Luna V et al. Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 2009; 45:12–19 [View Article]
    [Google Scholar]
  18. Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C et al. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 2009; 45:28–35 [View Article]
    [Google Scholar]
  19. Gualpa J, Lopez G, Nievas S, Coniglio A, Halliday N, Cámara M et al. Azospirillum brasilense Az39, a model rhizobacterium with AHL quorum-quenching capacity. J Appl Microbiol 2020; 126:1850–60
    [Google Scholar]
  20. Cassan FD, Coniglio A, Amavizca E, Maroniche G, Cascales E et al. The Azospirillum brasilense type VI secretion system promotes cell aggregation, biocontrol protection against phytopathogens and attachment to the microalgae Chlorella sorokiniana. Environ Microbiol 2021; 23:6257–6274 [View Article]
    [Google Scholar]
  21. Dos Santos Ferreira N, Hayashi Sant’ Anna F, Massena Reis V, Ambrosini A, Gazolla Volpiano C et al. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. Int J Syst Evol Microbiol 2020; 70:6203–6212 [View Article] [PubMed]
    [Google Scholar]
  22. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  23. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  24. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  25. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  27. Sant’Anna FH, Ambrosini A, de Souza R, de Carvalho Fernandes G, Bach E et al. Reclassification of Paenibacillus riograndensis as a genomovar of Paenibacillus sonchi: genome-based metrics improve bacterial taxonomic classification. Front Microbiol 2017; 8:1849 [View Article] [PubMed]
    [Google Scholar]
  28. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article] [PubMed]
    [Google Scholar]
  29. Vinuesa P, Contreras-Moreira B. Robust identification of orthologues and paralogues for microbial pan-genomics using GET_HOMOLOGUES: a case study of pIncA/C plasmids. Methods Mol Biol 2015; 1231:203–232
    [Google Scholar]
  30. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  31. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  32. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  33. Volpiano CG, Sant’Anna FH, Ambrosini A, de São José JFB, Beneduzi A et al. Genomic metrics applied to rhizobiales (Hyphomicrobiales): Species reclassification, identification of unauthentic genomes and false type strains. Front Microbiol 2021; 12:12 [View Article] [PubMed]
    [Google Scholar]
  34. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  35. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [View Article] [PubMed]
    [Google Scholar]
  36. García JE, Labarthe MM, Pagnussat LA, Amenta M, Creus CM et al. Signs of a phyllospheric lifestyle in the genome of the stress-tolerant strain Azospirillum brasilense Az19. Syst Appl Microbiol 2020; 43:126130 [View Article]
    [Google Scholar]
  37. Murray R, Doetsch R, Robinow C. Determinative and cytological light microscopy. In Gerhardt P. eds Methods for General and Molecular Bacteriology Washington: ASM Press; 1994 pp 21–41
    [Google Scholar]
  38. Alves LPS, Almeida AT, Cruz LM, Pedrosa FO, de Souza EM et al. A simple and efficient method for poly-3-hydroxybutyrate quantification in diazotrophic bacteria within 5 minutes using flow cytometry. Braz J Med Biol Res 2017; 50:e5492 [View Article] [PubMed]
    [Google Scholar]
  39. CLSI Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard - Eleventh edition. CLSI document M02-A11 Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  40. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, Del. USA: Technical Note # 101 Microbial ID, Inc; 2001
    [Google Scholar]
  41. Michel DC, Passos SR, Simões-Araujo JL, Baraúna AC, da Silva K et al. Bradyrhizobium centrolobii and Bradyrhizobium macuxiense sp. nov. isolated from Centrolobium paraense grown in soil of Amazonia, Brazil. Arch Microbiol 2017; 199:657–664 [View Article]
    [Google Scholar]
  42. Jensen JB, Egsgaard H, Van Onckelen H, Jochimsen BU. Catabolism of indole-3-acetic acid and 4- and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum. J Bacteriol 1995; 177:5762–5766 [View Article]
    [Google Scholar]
  43. Hardy RWF, Burns RC, Holsten RD. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 1973; 5:47–81 [View Article]
    [Google Scholar]
  44. Koch B, Evans HJ. Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol 1966; 41:1748–1750 [View Article] [PubMed]
    [Google Scholar]
  45. Reis VM, Döbereiner J. Effect of high sugar concentration on nitrogenase activity of Acetobacter diazotrophicus. Arch Microbiol 1998; 171:13–18 [View Article] [PubMed]
    [Google Scholar]
  46. García JE, Maroniche G, Creus C, Suárez-Rodríguez R, Ramirez-Trujillo JA et al. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol Res 2017; 202:21–29 [View Article]
    [Google Scholar]
  47. Cassán F, Vanderleyden J, Spaepen S. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 2013; 33:440–459 [View Article]
    [Google Scholar]
  48. Lin SY, Shen FT, Young LS, Zhu ZL, Chen WM et al. Azospirillum formosense sp. nov., a diazotroph from agricultural soil. Int J Syst Evol Microbiol 2012; 62:1185–1190 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005475
Loading
/content/journal/ijsem/10.1099/ijsem.0.005475
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error