1887

Abstract

A Gram-stain-negative and rod-shaped bacterial strain (WSW3-B6) was isolated from red alga collected from the West Sea, Republic of Korea. Cells of strain WSW3-B6 were non-motile, aerobic and produced slightly yellow and mucoid colonies on marine agar. The strain grew optimally at 23–30 °C, with 0.5–4 % NaCl (w/v) and at pH 6.5–8.5. A phylogenetic analysis of the 16S rRNA gene revealed that strain WSW3-B6 belongs to the genus within the family , having the highest sequence similarity to SM1502 (96.7%), followed by subsp. LaA7.5 (96.2%) and subsp. SaA2.12 (96.2%). The complete sequence of a circular chromosome of strain WSW3-B6 determined by combination of Oxford Nanopore and Illumina platforms comprised a total 2 725 095 bp with G+C content of 37.1 mol%. A comparative analysis based on the whole genome also showed the distinctiveness of strain WSW3-B6. The average nucleotide identity (ANI) values between strain WSW3-B6 and the closest strains SM1502, subsp. LaA7.5 and subsp. SaA2.12 were 78.3, 77.8 and 77.7 %, respectively, while the digital DNA–DNA hybridization (dDDH) values between strain WSW3-B6 and the above closely related strains were 21.0, 20.4 and 20.3 %, respectively. Both the ANI and dDDH values supported the creation of a new species in the genus . The major fatty acids (>10 %) were iso-C (19.3 %), C (14.0 %), iso-C 3-OH (13.1 %) and C (10.7 %). The polar lipids of strain WSW3-B6 included phosphatidylethanolamine, three unidentified aminolipids and three unidentified lipids. Moreover, MK-6 was the only respiratory quinone. A comparison of the phylogenetic distinctiveness and the unique phenotypic and chemotaxonomic characteristics among strain WSW3-B6 and closely related type strains supported that strain WSW3-B6 (=KCTC 82708=GDMCC 1.2627) represents a novel species of the genus , for which the name sp. nov. is proposed.

Keyword(s): bacteria , Bacteroidota and seaweed
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005458
2022-08-11
2024-05-20
Loading full text...

Full text loading...

References

  1. Murai U, Yamagishi K, Sata M, Kokubo Y, Saito I et al. Seaweed intake and risk of cardiovascular disease: the Japan Public Health Center-based Prospective (JPHC) Study. Am J Clin Nutr 2019; 110:1449–1455 [View Article] [PubMed]
    [Google Scholar]
  2. Yun EJ, Yu S, Park NJ, Cho Y, Han NR et al. Metabolic and enzymatic elucidation of cooperative degradation of red seaweed agarose by two human gut bacteria. Sci Rep 2021; 11:13955 [View Article] [PubMed]
    [Google Scholar]
  3. Wang X-J, Xu L, Wang N, Sun H-M, Chen X-L et al. Putridiphycobacter roseus gen. nov., sp. nov., isolated from Antarctic rotten seaweed. Int J Syst Evol Microbiol 2020; 70:648–655 [View Article]
    [Google Scholar]
  4. Khan I, Debnath SC, Yan C, Chen C, Xu Y et al. Flavobacterium ajazii sp. nov., isolated from seaweed of Gouqi Island, China. Curr Microbiol 2020; 77:2925–2932 [View Article]
    [Google Scholar]
  5. Bergey D, Harrison F, Breed R, Hammer B, Huntoon FM et al. Genus II. Flavobacterium gen. nov. In Bergey’s Manual of Determinative Bacteriology, 1st edn. Baltimore: Williams & Wilkins; 1923 pp 97–117
    [Google Scholar]
  6. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  7. Dong K, Chen F, Du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 2013; 63:886–892 [View Article] [PubMed]
    [Google Scholar]
  8. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63:1633–1638 [View Article] [PubMed]
    [Google Scholar]
  9. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY et al. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai’i, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63:3280–3286 [View Article] [PubMed]
    [Google Scholar]
  10. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  11. Liu Y, Le Han H, Zou Y, Kim SG. Flavobacterium ustbae sp. nov., isolated from rhizosphere soil of Alhagi sparsifolia. Int J Syst Evol Microbiol 2019; 69:3955–3960 [View Article]
    [Google Scholar]
  12. Zhang R, Zhang XY, Sun XK, Mu DS, Du ZJ. Flavobacterium cerinum sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2019; 69:3745–3750 [View Article] [PubMed]
    [Google Scholar]
  13. Bernardet JF, Bowman J. Genus I. Flavobacterium Bergey et al. 1923. In Whitman W. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 4 New York, NY: Springer; 2011 pp 112–154
    [Google Scholar]
  14. Chhetri G, Kim I, Kang M, Kim J, So Y et al. Flavobacterium tagetis sp. nov., a novel urea-hydrolysing bacterium isolated from the roots of Tagetes patula. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  15. Li AH, Liu HC, Zhou YG. Flavobacterium orientale sp. nov., isolated from lake water. Int J Syst Evol Microbiol 2017; 67:108–112 [View Article] [PubMed]
    [Google Scholar]
  16. Mann AJ, Hahnke RL, Huang S, Werner J, Xing P et al. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol 2013; 79:6813–6822 [View Article] [PubMed]
    [Google Scholar]
  17. Sun H, Zheng H, Wang X, Jiang Y, Liao B et al. Flavobacterium coralii sp. nov., a marine bacterium isolated from coral culture seawater. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  18. Choi HR, Park SH, Heo MS. Flavobacterium jocheonensis sp. nov., isolated from marine green alga Ulva pertusa. J Microbiol Biotechnol 2019; 29:1266–1272 [View Article]
    [Google Scholar]
  19. Debnath SC, Miyah AMA, Chen C, Sheng H, Xu X-W et al. Flavobacterium zhairuonensis sp. nov., a gliding bacterium isolated from marine sediment of the East China Sea. J Microbiol 2019; 57:1065–1072 [View Article] [PubMed]
    [Google Scholar]
  20. Pheng S, Han HL, Park D-S, Chung CH, Kim S-G. Lactococcus kimchii sp. nov., a new lactic acid bacterium isolated from kimchi. Int J Syst Evol Microbiol 2020; 70:505–510 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  26. Li D-D, Liu C, Zhang Y-Q, Wang X-J, Wang N et al. Flavobacterium arcticum sp. nov., isolated from Arctic seawater. Int J Syst Evol Microbiol 2017; 67:1070–1074 [View Article] [PubMed]
    [Google Scholar]
  27. Debnath SC, Chen C, Khan I, Wang W-J, Zheng D-Q et al. Flavobacterium salilacus sp. nov., isolated from surface water of a hypersaline lake, and descriptions of Flavobacterium salilacus subsp. altitudinum subsp. nov. and Flavobacterium salilacus subsp. salilacus subsp. nov. Int J Syst Evol Microbiol 2020; 70:4250–4260 [View Article]
    [Google Scholar]
  28. Lu H, Giordano F, Ning Z. Oxford Nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics 2016; 14:265–279 [View Article] [PubMed]
    [Google Scholar]
  29. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  30. Cantarel BL, Korf I, Robb SMC, Parra G, Ross E et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 2008; 18:188–196 [View Article] [PubMed]
    [Google Scholar]
  31. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  33. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  34. Terrapon N, Lombard V, Drula É, Lapébie P, Al-Masaudi S et al. PULDB: the expanded database of Polysaccharide Utilization Loci. Nucleic Acids Res 2018; 46:D677–D683 [View Article] [PubMed]
    [Google Scholar]
  35. Gobet A, Barbeyron T, Matard-Mann M, Magdelenat G, Vallenet D et al. Evolutionary evidence of algal polysaccharide degradation acquisition by Pseudoalteromonas carrageenovora 9T to adapt to macroalgal niches. Front Microbiol 2018; 9:2740 [View Article] [PubMed]
    [Google Scholar]
  36. Holck J, Fredslund F, Møller MS, Brask J, Krogh KBRM et al. A carbohydrate-binding family 48 module enables feruloyl esterase action on polymeric arabinoxylan. J Biol Chem 2019; 294:17339–17353 [View Article] [PubMed]
    [Google Scholar]
  37. Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel 2006; 19:555–562 [View Article] [PubMed]
    [Google Scholar]
  38. Jiang L, Pheng S, Lee KC, Kang SW, Jeong JC et al. Cohnella abietis sp. nov., isolated from Korean fir (Abies koreana) rhizospheric soil of Halla mountain. J Microbiol 2019; 57:953–958 [View Article] [PubMed]
    [Google Scholar]
  39. Ueno A, Tamazawa S, Tamamura S, Murakami T, Kiyama T et al. Desulfovibrio subterraneus sp. nov., a mesophilic sulfate-reducing deltaproteobacterium isolated from a deep siliceous mudstone formation. Int J Syst Evol Microbiol 2021; 71:004683 [View Article] [PubMed]
    [Google Scholar]
  40. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580 [View Article] [PubMed]
    [Google Scholar]
  41. Lin S-Y, Chen W-M, Huang G-H, Hameed A, Chang C-T et al. Flavobacterium supellecticarium sp. nov., isolated from an abandoned construction timber. Int J Syst Evol Microbiol 2020; 70:3731–3739 [View Article] [PubMed]
    [Google Scholar]
  42. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge, New York: Cambridge University Press; 1993 [View Article]
    [Google Scholar]
  43. Zhao H, Shan J, Wang T, Tian Y, Shen Y et al. Vibrio marinisediminis sp. nov., isolated from marine sediment. Curr Microbiol 2021; 78:810–815 [View Article]
    [Google Scholar]
  44. Sasser M. Technical Note 101: Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc; 1990
  45. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. Methods microbiol 1988; 19:161–207
    [Google Scholar]
  46. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005458
Loading
/content/journal/ijsem/10.1099/ijsem.0.005458
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error