1887

Abstract

Minutes of the closed meeting of the International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria held by videoconference, 5 July 2021, followed by online discussion until 31 December 2021, and list of recent species.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005453
2022-06-13
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/6/ijsem005453.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005453&mimeType=html&fmt=ahah

References

  1. de Lajudie P, Mousavi SA, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria. Minutes of the closed meeting by videoconference, 6 July 2020. Int J Syst Evol Microbiol 2021; 71:004784 [View Article] [PubMed]
    [Google Scholar]
  2. Ludwig W, Viver T, Westram R, Francisco Gago J, Bustos-Caparros E et al. Release LTP_12_2020, featuring a new ARB alignment and improved 16S rRNA tree for prokaryotic type strains. Syst Appl Microbiol 2021; 44:126218 [View Article] [PubMed]
    [Google Scholar]
  3. Martens M, Delaere M, Coopman R, De Vos P, Gillis M et al. Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 2007; 57:489–503 [View Article] [PubMed]
    [Google Scholar]
  4. Young JPW, Moeskjær S, Afonin A, Rahi P, Maluk M et al. Defining the Rhizobium leguminosarum species complex. Genes 2021; 12:111 [View Article]
    [Google Scholar]
  5. Mousavi SA, Gao Y, Penttinen P, Frostegård Å, Paulin L et al. Using amplicon sequencing of rpoB for identification of inoculant rhizobia from peanut nodules. Lett Appl Microbiol 2022; 74:204–211 [View Article] [PubMed]
    [Google Scholar]
  6. Velázquez E, Flores-Félix JD, Sánchez-Juanes F, Igual JM, Peix Á. Strain ATCC 4720T is the authentic type strain of Agrobacterium tumefaciens, which is not a later heterotypic synonym of Agrobacterium radiobacter. Int J Syst Evol Microbiol 2020; 70:5172–5176 [View Article]
    [Google Scholar]
  7. Sneath PHA, McGowan V, Skerman VBD. Approved lists of bacterial names. Int J Syst Evol Microbiol 1980; 30:225–420 [View Article]
    [Google Scholar]
  8. Sawada H, Ieki H, Oyaizu H, Matsumoto S. Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol 1993; 43:694–702 [View Article]
    [Google Scholar]
  9. Lindström K, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Agrobacterium and Rhizobium: minutes of the meeting, 7 September 2010, Geneva, Switzerland. Int J Syst Evol Microbiol 2011; 61:3089–3093 [View Article]
    [Google Scholar]
  10. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 2015; 38:84–90 [View Article]
    [Google Scholar]
  11. Kuzmanović N, Fagorzi C, Mengoni A, Lassalle F, diCenzo GC. Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation. Int J Syst Evol Microbiol 2022; 72:005243 [View Article] [PubMed]
    [Google Scholar]
  12. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C et al. Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 2014; 37:208–215 [View Article] [PubMed]
    [Google Scholar]
  13. Trujillo ME, Willems A, Abril A, Planchuelo A-M, Rivas R et al. Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 2005; 71:1318–1327 [View Article] [PubMed]
    [Google Scholar]
  14. Gazolla Volpiano C, Hayashi Sant’Anna F, Ambrosini A, Brito Lisboa B, Kayser Vargas L et al. Reclassification of Ochrobactrum lupini as a later heterotypic synonym of Ochrobactrum anthropi based on whole-genome sequence analysis. Int J Syst Evol Microbiol 2019; 69:2312–2314 [View Article] [PubMed]
    [Google Scholar]
  15. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  16. Volpiano CG, Sant’Anna FH, Ambrosini A, São José JF, Beneduzi A et al. Genomic metrics applied to rrhizobiales (hhyphomicrobiales): species reclassification, identification of unauthentic genomes and false type strains. Front Microbiol 2021; 12:614957 [View Article]
    [Google Scholar]
  17. Tian CF, Wang ET, Wu LJ, Han TX, Chen WF et al. Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 2008; 58:2871–2875 [View Article]
    [Google Scholar]
  18. Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R et al. Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 2008; 58:2484–2490 [View Article]
    [Google Scholar]
  19. Mnasri B, Liu TY, Saidi S, Chen WF, Chen WX et al. Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 2014; 64:1501–1506 [View Article]
    [Google Scholar]
  20. Amarger N, Macheret V, Laguerre G. Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Evol Microbiol 1997; 47:996–1006 [View Article]
    [Google Scholar]
  21. Rahi P. Regulating access can restrict participation in reporting new species and taxa. Nat Microbiol 2021; 6:1469–1470 [View Article] [PubMed]
    [Google Scholar]
  22. Whitman WB, Bull CT, Busse H-J, Fournier P-E, Oren A et al. Request for revision of the statutes of the international committee on systematics of prokaryotes. Int J Syst Evol Microbiol 2019; 69:584–593 [View Article] [PubMed]
    [Google Scholar]
  23. Castellano-Hinojosa A, Correa-Galeote D, Ramírez-Bahena M-H, Tortosa G, González-López J et al. Agrobacterium leguminum sp. nov., isolated from nodules of Phaseolus vulgaris in Spain. Int J Syst Evol Microbiol 2021; 71:005120 [View Article] [PubMed]
    [Google Scholar]
  24. Singh NK, Lavire C, Nesme J, Vial L, Nesme X et al. Comparative genomics of novel Agrobacterium G3 strains isolated from the international space station and description of Agrobacterium tomkonis sp. nov. Front Microbiol 2021; 12:3369 [View Article] [PubMed]
    [Google Scholar]
  25. Gao Z, Zhang Q, Lv Y, Wang Y, Zhao B. Paraburkholderia acidiphila sp. nov., Paraburkholderia acidisoli sp. nov. and Burkholderia guangdongensis sp. nov., isolated from forest soil, and reclassification of Burkholderia ultramafica as Paraburkholderia ultramafica comb. nov. Int J Syst Evol Microbiol 2021; 71:004690
    [Google Scholar]
  26. Hall CM, Baker AL, Sahl JW, Mayo M, Scholz HC et al. Expanding the Burkholderia pseudomallei complex with the addition of two novel species: Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Appl Environ Microbiol 2021; 88:e01583–21 [View Article]
    [Google Scholar]
  27. Andrade JP, de Souza HG, Ferreira LC, Cnockaert M, De Canck E et al. Burkholderia perseverans sp. nov., a bacterium isolated from the Restinga ecosystem, is a producer of volatile and diffusible compounds that inhibit plant pathogens. Braz J Microbiol 2021; 52:2145–2152 [View Article]
    [Google Scholar]
  28. Avontuur JR, Palmer M, Beukes CW, Chan WY, Tasiya T et al. Bradyrhizobium altum sp. nov., Bradyrhizobium oropedii sp. nov. and Bradyrhizobium acaciae sp. nov. from South Africa show locally restricted and pantropical nodA phylogeographic patterns. Mol Phylogenet Evol 2022; 167:107338 [View Article]
    [Google Scholar]
  29. Klepa MS, Ferraz Helene LC, O’Hara G, Hungria M. Bradyrhizobium agreste sp. nov., Bradyrhizobium glycinis sp. nov. and Bradyrhizobium diversitatis sp. nov., isolated from a biodiversity hotspot of the genus Glycine in Western Australia. Int J Syst Evol Microbiol 2021; 71:004742
    [Google Scholar]
  30. Bromfield ESP, Cloutier S. Bradyrhizobium septentrionale sp. nov. (sv. septentrionale) and Bradyrhizobium quebecense sp. nov. (sv. septentrionale) associated with legumes native to Canada possess rearranged symbiosis genes and numerous insertion sequences. Int J Syst Evol Microbiol 2021; 71:004831 [View Article]
    [Google Scholar]
  31. Rahi P, Khairnar M, Hagir A, Narayan A, Jain KR et al. Peteryoungia gen. nov. with four new species combinations and description of Peteryoungia desertarenae sp. nov., and taxonomic revision of the genus Ciceribacter based on phylogenomics of Rhizobiaceae. Arch Microbiol 2021; 203:3591–3604 [View Article]
    [Google Scholar]
  32. Deng T, Qian Y, Chen X, Yang X, Guo J et al. Ciceribacter ferrooxidans sp. nov., a nitrate-reducing Fe(II)-oxidizing bacterium isolated from ferrous ion-rich sediment. J Microbiol 2020; 58:350–356 [View Article]
    [Google Scholar]
  33. Kweon OJ, Ruan W, Khan SA, Lim YK, Kim HR et al. Cupriavidus cauae sp. nov., isolated from blood of an immunocompromised patient. Int J Syst Evol Microbiol 2021; 71:004759
    [Google Scholar]
  34. Klonowska A, Moulin L, Ardley JK, Braun F, Gollagher MM et al. Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil. BMC Genomics 2020; 21:1–18 [View Article]
    [Google Scholar]
  35. Khan SA, Kim HM, Chun BH, Jeon CO. Devosia aurantiaca sp. nov., isolated from mountain soil and proposal of Albitalea gen. nov. to replace the illegitimate prokaryotic genus name Geomonas Khan et al. 2020. Curr Microbiol 2021; 78:2548–2555 [View Article]
    [Google Scholar]
  36. Zhang Y-X, Yu Y, Luo W, Zeng Y-X, Du Z-J et al. Devosia beringensis sp. nov., isolated from surface sediment of the Bering Sea. Int J Syst Evol Microbiol 2021; 71:004995 [View Article] [PubMed]
    [Google Scholar]
  37. Kämpfer P, Busse H-J, Clermont D, Criscuolo A, Glaeser SP. Devosia equisanguinis sp. nov., isolated from horse blood. Int J Syst Evol Microbiol 2021; 71:005090 [View Article] [PubMed]
    [Google Scholar]
  38. Lin S-Y, Tsai C-F, Hameed A, Tang Y-S, Young C-C. Description of Devosia faecipullorum sp. nov., harboring antibiotic-and toxic compound-resistace genes, isolated from poultry manure. Int J Syst Evol Microbiol 2021; 71:004901
    [Google Scholar]
  39. Chhetri G, Kim I, Kang M, Kim J, So Y et al. Devosia rhizoryzae sp. nov., and Devosia oryziradicis sp. nov., novel plant growth promoting members of the genus Devosia, isolated from the rhizosphere of rice plants. J Microbiol 2022; 60:1–10 [View Article] [PubMed]
    [Google Scholar]
  40. Pedron R, Luchi E, Albiac MA, Di Cagno R, Catorci D et al. Mesorhizobium comanense sp. nov., isolated from groundwater. Int J Syst Evol Microbiol 2021; 71:005131 [View Article]
    [Google Scholar]
  41. Jung J, Seo YL, Kim KR, Park HY, Jeon CO. Mesorhizobium microcysteis sp. nov., isolated from a culture of Microcystis aeruginosa. Int J Syst Evol Microbiol 2021; 71:004847 [View Article]
    [Google Scholar]
  42. León-Barrios M, Flores-Félix J-D, Pérez-Yépez J, Ramirez-Bahena M-H, Pulido-Suárez L et al. Definition of the novel symbiovar canariense within Mesorhizobium neociceri sp. nov., a new species of genus Mesorhizobium nodulating Cicer canariense in the “Caldera de Taburiente” National Park (La Palma, Canary Islands). Syst Appl Microbiol 2021; 44:126237 [View Article]
    [Google Scholar]
  43. Meng D, Liu Y-L, Zhang J-J, Gu P-F, Fan X-Y et al. Mesorhizobium xinjiangense sp. nov., isolated from rhizosphere soil of Alhagi sparsifolia. Arch Microbiol 2021; 204:1–6 [View Article]
    [Google Scholar]
  44. Bijlani S, Singh NK, Eedara VVR, Podile AR, Mason CE et al. Methylobacterium ajmalii sp. nov., isolated from the International Space Station. Front Microbiol 2021; 12:534 [View Article]
    [Google Scholar]
  45. Maeng S, Kim D-U, Lim S, Lee B-H, Lee K-E et al. Methylobacterium radiodurans sp. nov., a novel radiation-resistant Methylobacterium. Arch Microbiol 2021; 203:3435–3442 [View Article]
    [Google Scholar]
  46. Ten LN, Li W, Elderiny NS, Kim MK, Lee S-Y et al. Methylobacterium segetis sp. nov., a novel member of the family Methylobacteriaceae isolated from soil on Jeju Island. Arch Microbiol 2020; 202:747–754 [View Article]
    [Google Scholar]
  47. Oh H, Kim MK, Srinivasan S. Microvirga pudoricolor sp. nov., and Microvirga alba sp. nov., isolated from soil in South Korea. Arch Microbiol 2021; 203:6071–6077 [View Article]
    [Google Scholar]
  48. Zhu L, Ping W, Zhang S, Chen Y, Zhang Y et al. Description and genome analysis of Microvirga antarctica sp. nov., a novel pink-pigmented psychrotolerant bacterium isolated from Antarctic soil. Antonie van Leeuwenhoek 2021; 114:2219–2228 [View Article]
    [Google Scholar]
  49. Boxberger M, Ben Khedher M, Magnien S, Cassir N, La Scola B. Draft genome and description of Microvirga mediterraneensis strain Marseille-Q2068T sp. nov., a new bacterium isolated from human healthy skin. New Microbes New Infect 2021; 40:100839 [View Article]
    [Google Scholar]
  50. Liu L, Shi S, Liang L, Xu L, Chi M et al. Neorhizobium lilium sp. nov., an endophytic bacterium isolated from Lilium pumilum bulbs in Hebei province. Arch Microbiol 2020; 202:609–616 [View Article]
    [Google Scholar]
  51. Soenens A, Gomila M, Imperial J. Neorhizobium tomejilense sp. nov., first non-symbiotic Neorhizobium species isolated from a dryland agricultural soil in southern Spain. Syst Appl Microbiol 2019; 42:128–134 [View Article]
    [Google Scholar]
  52. Li M, Liu Y, Liu K, Luo S, Yi X et al. Pararhizobium mangrovi sp. nov., isolated from Aegiceras corniculatum stem. Curr Microbiol 2021; 78:2828–2837 [View Article]
    [Google Scholar]
  53. Rudra B, Gupta RS. Phylogenomic and comparative genomic analyses of species of the family Pseudomonadaceae: proposals for the genera Halopseudomonas gen. nov. and Atopomonas gen. nov., merger of the genus Oblitimonas with the genus Thiopseudomonas, and transfer of some misclassified species of the genus Pseudomonas into other genera. Int J Syst Evol Microbiol 2021; 71:005011 [View Article]
    [Google Scholar]
  54. Dahal RH, Kim J, Chaudhary DK, Kim D-U, Kim J. Description of antibiotic-producing novel bacteria Paraburkholderia antibiotica sp. nov. and Paraburkholderia polaris sp. nov. Int J Syst Evol Microbiol 2021; 71:005060 [View Article]
    [Google Scholar]
  55. Herpell JB, Vanwijnsberghe S, Peeters C, Schindler F, Fragner L et al. Paraburkholderia dioscoreae sp. nov., a novel plant associated growth promotor. Int J Syst Evol Microbiol 2021; 71:004969 [View Article]
    [Google Scholar]
  56. Vanwijnsberghe S, Peeters C, De Ridder E, Dumolin C, Wieme AD et al. Genomic aromatic compound degradation potential of novel Paraburkholderia species: Paraburkholderia domus sp. nov., Paraburkholderia haematera sp. nov. and Paraburkholderia nemoris sp. nov. Int J Mol Sci 2021; 22:7003 [View Article]
    [Google Scholar]
  57. Paulitsch F, Dall’Agnol RF, Delamuta JRM, Ribeiro RA, da Silva Batista JS et al. Paraburkholderia guartelaensis sp. nov., a nitrogen-fixing species isolated from nodules of Mimosa gymnas in an ecotone considered as a hotspot of biodiversity in Brazil. Arch Microbiol 2019; 201:1435–1446 [View Article] [PubMed]
    [Google Scholar]
  58. Feng T, Jeong SE, Lim JJ, Hyun S, Jeon CO. Paraburkholderia lacunae sp. nov., isolated from soil near an artificial pond. J Microbiol 2019; 57:232–237 [View Article] [PubMed]
    [Google Scholar]
  59. Zhang J, Peng S, Andrews M, Liu C, Shang Y et al. Rhizobium changzhiense sp. nov., isolated from effective nodules of Vicia sativa L. in North China. Int J Syst Evol Microbiol 2019; 71:004724 [View Article] [PubMed]
    [Google Scholar]
  60. Su X-J, Liu G-P, Zhang L, Zhou X-Y, Qiao W-J et al. Rhizobium flavescens sp. nov., isolated from a chlorothalonil-contaminated soil. Curr Microbiol 2021; 78:2165–2172 [View Article]
    [Google Scholar]
  61. Thin KK, He S-W, Wang X, Wang Y, Rong M et al. Rhizobium rhizolycopersici sp. nov., isolated from the rhizosphere soil of tomato plants in China. Curr Microbiol 2021; 78:830–836 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005453
Loading
/content/journal/ijsem/10.1099/ijsem.0.005453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error