1887

Abstract

A Gram-stain-positive, aerobic and endospore-forming bacterial strain, isolated from the root surface of maize () was taxonomically studied. It could be clearly shown that, based on 16S rRNA gene sequence similarity comparisons, strain JJ-63 is a member of the genus , most closely related to the type strain of (98.61%), followed by (98.47 %). Detailed phylogenetic analysis based on the 16S rRNA gene and the 87 proteins conserved within the phylum placed the strain into the Cereus clade. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values against the type strain of were 80.97, 81.45 and 26.30 %, respectively. The quinone system of strain JJ-63 consisted exclusively of menaquinone MK-7. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified glycolipid. Major fatty acids were iso- and anteiso-branched with the major compounds iso-C and iso-C. Also, the characteristic compounds C iso and C 10 were found. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-63 from the most closely related species. For this reason, JJ-63 represents a novel species of the genus , for which the name sp. nov. is proposed, with JJ-63 (=LMG 32091=CCM 9090=DSM 111827= CIP 111899) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005450
2022-07-14
2022-10-04
Loading full text...

Full text loading...

References

  1. Carro L, Flores-Félix JD, Cerda-Castillo E, Ramírez-Bahena MH, Igual JM et al. Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 2013; 63:4433–4438 [View Article] [PubMed]
    [Google Scholar]
  2. Lai WA, Hameed A, Lin SY, Hung MH, Hsu YH et al. Paenibacillus medicaginis sp. nov. a chitinolytic endophyte isolated from a root nodule of alfalfa (Medicago sativa L.). Int J Syst Evol Microbiol 2015; 65:3853–3860 [View Article] [PubMed]
    [Google Scholar]
  3. Kittiwongwattana C, Thawai C. Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol 2015; 65:107–112 [View Article] [PubMed]
    [Google Scholar]
  4. Gao J, Lv F, Wang X, Qiu T, Yuan M et al. Paenibacillus wenxiniae sp. nov., a nifH gene -harbouring endophytic bacterium isolated from maize. Antonie van Leeuwenhoek 2015; 108:1015–1022 [View Article] [PubMed]
    [Google Scholar]
  5. Ma Y, Xia Z, Liu X, Chen S. Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. Int J Syst Evol Microbiol 2007; 57:6–11 [View Article] [PubMed]
    [Google Scholar]
  6. Kim B-C, Lee KH, Kim MN, Kim E-M, Min SR et al. Paenibacillus pini sp. nov., a cellulolytic bacterium isolated from the rhizosphere of pine tree. J Microbiol 2009; 47:699–704 [View Article] [PubMed]
    [Google Scholar]
  7. Kim BC, Lee KH, Kim MN, Kim EM, Rhee MS et al. Paenibacillus pinihumi sp. nov., a cellulolytic bacterium isolated from the rhizosphere of Pinus densiflora. J Microbiol 2009; 47:530–535 [View Article] [PubMed]
    [Google Scholar]
  8. Hong YY, Ma YC, Zhou YG, Gao F, Liu HC et al. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. Int J Syst Evol Microbiol 2009; 59:2656–2661 [View Article] [PubMed]
    [Google Scholar]
  9. Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH et al. Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. Int J Syst Evol Microbiol 2010; 60:128–133 [View Article] [PubMed]
    [Google Scholar]
  10. Zhang L, Gao JS, Zhang S, Ali Sheirdil R, Wang XC et al. Paenibacillus rhizoryzae sp. nov., isolated from rice rhizosphere. Int J Syst Evol Microbiol 2015; 65:3053–3059 [View Article] [PubMed]
    [Google Scholar]
  11. Zhang J, Wang ZT, Yu HM, Ma Y. Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa. Int J Syst Evol Microbiol 2013; 63:1776–1781 [View Article] [PubMed]
    [Google Scholar]
  12. Wang D, Jiang Y, Wei X, Lai H, Xue Q. Paenibacillus quercus sp. nov., isolated from rhizosphere of Quercus aliena var. acuteserrata. Antonie van Leeuwenhoek 2014; 105:1173–1178 [View Article] [PubMed]
    [Google Scholar]
  13. Son JS, Kang HU, Ghim SY. Paenibacillus dongdonensis sp. nov., isolated from rhizospheric soil of Elymus tsukushiensis. Int J Syst Evol Microbiol 2014; 64:2865–2870 [View Article] [PubMed]
    [Google Scholar]
  14. Han T-Y, Tong X-M, Wang Y-W, Wang H-M, Chen X-R et al. Paenibacillus populi sp. nov., a novel bacterium isolated from the rhizosphere of Populus alba. Antonie van Leeuwenhoek 2015; 108:659–666 [View Article] [PubMed]
    [Google Scholar]
  15. Liu Y, Zhai L, Wang R, Zhao R, Zhang X et al. Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 2015; 65:4533–4538 [View Article]
    [Google Scholar]
  16. Rivas R, Mateos PF, Martínez-Molina E, Velázquez E. Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 2005; 55:743–746 [View Article] [PubMed]
    [Google Scholar]
  17. Rivas R, García-Fraile P, Mateos PF, Martínez-Molina E, Velázquez E. Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 2006; 56:2777–2781 [View Article] [PubMed]
    [Google Scholar]
  18. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203 [View Article] [PubMed]
    [Google Scholar]
  19. Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406–438 [View Article]
    [Google Scholar]
  20. Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 2020; 70:5753–5798 [View Article] [PubMed]
    [Google Scholar]
  21. Wu D, Jospin G, Eisen JA. Systematic identification of gene families for use as “markers” for phylogenetic and phylogeny-driven ecological studies of bacteria and archaea and their major subgroups. PLoS One 2013; 8:e77033 [View Article]
    [Google Scholar]
  22. Tohya M, Hishinuma T, Watanabe S, Shimojima M, Ogawa M et al. Three novel species of the Bacillus cereus group isolated from clinical samples in Japan. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  23. Méndez Acevedo M, Carroll LM, Mukherjee M, Mills E, Xiaoli L et al. Novel effective Bacillus cereus group species “Bacillus clarus” is represented by antibiotic-producing strain ATCC 21929 isolated from soil. mSphere 2020; 5:e00882-20 [View Article]
    [Google Scholar]
  24. Liu Y, Du J, Lai Q, Zeng R, Ye D et al. Proposal of nine novel species of the Bacillus cereus group. Int J Syst Evol Microbiol 2017; 67:2499–2508 [View Article] [PubMed]
    [Google Scholar]
  25. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  26. Coloqhoun JA. Discovery of Deep-Sea Actinomycetes. PhD Dissertation. Research School of Biosciences. University of Kent, Canterbury; 1997
  27. Schauss T, Busse H-J, Golke J, Kämpfer P, Glaeser SP. Empedobacter stercoris sp. nov., isolated from an input sample of a biogas plant. Int J Syst Evol Microbiol 2015; 65:3746–3753 [View Article] [PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  29. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 1978; 75:4801–4805 [View Article] [PubMed]
    [Google Scholar]
  30. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  31. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article] [PubMed]
    [Google Scholar]
  32. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article] [PubMed]
    [Google Scholar]
  33. Ludwig W, Viver T, Westram R, Francisco Gago J, Bustos-Caparros E et al. Release LTP_12_2020, featuring a new ARB alignment and improved 16S rRNA tree for prokaryotic type strains. Syst Appl Microbiol 2021; 44:126218 [View Article] [PubMed]
    [Google Scholar]
  34. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  35. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences Seattle: University of Washington; 2005
    [Google Scholar]
  36. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  37. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  38. Katoh K, Standley DM. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 2016; 32:1933–1942 [View Article] [PubMed]
    [Google Scholar]
  39. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article]
    [Google Scholar]
  40. Cherif-Silini H, Thissera B, Bouket AC, Saadaoui N, Silini A et al. Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal. Int J Mol Sci 2019; 20:3989 [View Article] [PubMed]
    [Google Scholar]
  41. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  42. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  43. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralblatt für Bakteriologie 1990; 273:164–172 [View Article]
    [Google Scholar]
  44. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article] [PubMed]
    [Google Scholar]
  45. Schumann P. Peptidoglycan sstructure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  46. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  47. Wiertz R, Schulz SC, Müller U, Kämpfer P, Lipski A. Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol 2013; 63:4495–4501 [View Article] [PubMed]
    [Google Scholar]
  48. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. Technical Note 101 Newark, DE (USA): MIDI-Inc; 1990
    [Google Scholar]
  49. Derichs J, Kämpfer P, Lipski A. Pedobacter nutrimenti sp. nov., isolated from chilled food. Int J Syst Evol Microbiol 2014; 64:1310–1316 [View Article] [PubMed]
    [Google Scholar]
  50. Lipski A, Altendorf K. Identification of heterotrophic bacteria isolated from ammonia-supplied experimental biofilters. Syst Appl Microbiol 1997; 20:448–457 [View Article]
    [Google Scholar]
  51. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005450
Loading
/content/journal/ijsem/10.1099/ijsem.0.005450
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error