1887

Abstract

is a heterogeneous bacterial genus capable of establishing symbiotic associations with a broad range of legume hosts, including species of economic and environmental importance. This study was focused on the taxonomic and symbiovar definition of four strains – CNPSo 4026, WSM 1704, WSM 1738 and WSM 4400 – previously isolated from nodules of legumes in Western Australia and South Africa. The 16S rRNA gene phylogenetic tree allocated the strains to the supergroup. The multilocus sequence analysis (MLSA) with partial sequences of six housekeeping genes , , , , and – did not cluster the strains under study as conspecific to any described species. Average nucleotide identity and digital DNA–DNA hybridization values were calculated for the four strains of this study and the closest species according to the MLSA phylogeny with the highest values being 95.46 and 62.20 %, respectively; therefore, both being lower than the species delineation cut-off values. The and phylogenies included strains WSM 1738 and WSM 4400 in the symbiovars retamae and vignae respectively, and also allowed the definition of three new symbiovars, sv. cenepequi, sv. glycinis, and sv. cajani. Analysis of morphophysiological characterization reinforced the identification of four novel proposed species that are accordingly named as follows: sp. nov. (CNPSo 4026=WSM 4798=LMG 31653), isolated from ; sp. nov. (WSM 1704=CNPSo 4028=LMG 31654), isolated from ; sp. nov. (WSM 1738=CNPSo 4025=LMG 31652), isolated from sp.; and sp. nov. (WSM 4400=CNPSo 4015=LMG 31648) isolated from sp.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005446
2022-07-06
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/7/ijsem005446.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005446&mimeType=html&fmt=ahah

References

  1. Kumar N, Srivastava P, Vishwakarma K, Kumar R, Kuppala H et al. The Rhizobium–plant symbiosis: state of the art. In Varma A, Tripathi S, Prasad R. eds Microbe Symbiosis Singapore: Springer Nature; 2020 pp 1–20
    [Google Scholar]
  2. Wang ET, Chen WF, Tian CF, Young JPW, Chen WX. Symbiosis between Rhizobia and legumes. In Wang ET, Chen WF, Tian CF, Young JPW, Chen WX. eds Ecology and Evolution of Rhizobia Singapore: Springer Nature; 2019 pp 3–15
    [Google Scholar]
  3. Shamseldin A. The role of different genes involved in symbiotic nitrogen fixation - review. Glob J Biotechnol Biochem 2013; 8:84–94
    [Google Scholar]
  4. Lloret L, Martínez-Romero E. Evolución y filogenia de rhizobium. Rev Latinoam Microbiol 2005; 47:43–60
    [Google Scholar]
  5. Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J et al. The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes (Basel) 2012; 3:138–166 [View Article] [PubMed]
    [Google Scholar]
  6. Hungria M, Menna P, Marçon Delamuta JR. Bradyrhizobium, the ancestor of all rhizobia: phylogeny of housekeeping and nitrogen-fixation genes. In Bruijn FJ. eds Biological Nitrogen Fixation Hoboken, NJ: Wiley; 2015 pp 191–202
    [Google Scholar]
  7. Sprent JI, Ardley J, James EK. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol 2017; 215:40–56 [View Article] [PubMed]
    [Google Scholar]
  8. VanInsberghe D, Maas KR, Cardenas E, Strachan CR, Hallam SJ et al. Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME J 2015; 9:2435–2441 [View Article] [PubMed]
    [Google Scholar]
  9. Piromyou P, Greetatorn T, Teamtisong K, Okubo T, Shinoda R et al. Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. Appl Environ Microbiol 2015; 81:3049–3061 [View Article] [PubMed]
    [Google Scholar]
  10. de Castilho CL, Volpiano CG, Ambrosini A, Zulpo L, Passaglia L et al. Growth-promoting effects of Bradyrhizobium soybean symbionts in black oats, white oats, and ryegrass. Braz J Microbiol 2021; 52:1451–1460 [View Article] [PubMed]
    [Google Scholar]
  11. Trinick MJ. Structure of nitrogen-fixing nodules formed by Rhizobium on roots of Parasponia andersonii Planch. Can J Microbiol 1979; 25:565–578 [View Article] [PubMed]
    [Google Scholar]
  12. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E et al. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 2007; 316:1307–1312 [View Article] [PubMed]
    [Google Scholar]
  13. Menna P, Hungria M. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int J Syst Evol Microbiol 2011; 61:3052–3067 [View Article] [PubMed]
    [Google Scholar]
  14. Rogel MA, Ormeño-Orrillo E, Martinez Romero E. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 2011; 34:96–104 [View Article] [PubMed]
    [Google Scholar]
  15. Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A et al. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 2005; 55:569–575 [View Article] [PubMed]
    [Google Scholar]
  16. Guerrouj K, Ruíz-Díez B, Chahboune R, Ramírez-Bahena M-H, Abdelmoumen H et al. Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 2013; 36:218–223 [View Article] [PubMed]
    [Google Scholar]
  17. Bejarano A, Ramírez-Bahena M-H, Velázquez E, Peix A. Vigna unguiculata is nodulated in Spain by endosymbionts of Genisteae legumes and by a new symbiovar (vignae) of the genus Bradyrhizobium. Syst Appl Microbiol 2014; 37:533–540 [View Article] [PubMed]
    [Google Scholar]
  18. Cobo-Díaz JF, Martínez-Hidalgo P, Fernández-González AJ, Martínez-Molina E, Toro N et al. The endemic Genista versicolor from Sierra Nevada National Park in Spain is nodulated by putative new Bradyrhizobium species and a novel symbiovar (sierranevadense). Syst Appl Microbiol 2014; 37:177–185 [View Article] [PubMed]
    [Google Scholar]
  19. Ramírez-Bahena MH, Flores-Félix JD, Chahboune R, Toro M, Velázquez E et al. Bradyrhizobium centrosemae (symbiovar centrosemae) sp. nov., Bradyrhizobium americanum (symbiovar phaseolarum) sp. nov. and a new symbiovar (tropici) of Bradyrhizobium viridifuturi establish symbiosis with Centrosema species native to America. Syst Appl Microbiol 2016; 39:378–383 [View Article]
    [Google Scholar]
  20. Delamuta JRM, Menna P, Ribeiro RA, Hungria M. Phylogenies of symbiotic genes of Bradyrhizobium symbionts of legumes of economic and environmental importance in Brazil support the definition of the new symbiovars pachyrhizi and sojae. Syst Appl Microbiol 2017; 40:254–265 [View Article] [PubMed]
    [Google Scholar]
  21. Msaddak A, Rejili M, Durán D, Rey L, Palacios JM et al. Definition of two new symbiovars, sv. lupini and sv. mediterranense, within the genera Bradyrhizobium and Phyllobacterium efficiently nodulating Lupinus micranthus in Tunisia. Syst Appl Microbiol 2018; 41:487–493 [View Article] [PubMed]
    [Google Scholar]
  22. Bromfield ESP, Cloutier S. Bradyrhizobium septentrionale sp. nov. (sv. septentrionale) and Bradyrhizobium quebecense sp. nov. (sv. septentrionale) associated with legumes native to Canada possess rearranged symbiosis genes and numerous insertion sequences. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  23. Avontuur JR, Palmer M, Beukes CW, Chan WY, Coetzee MPA et al. Genome-informed Bradyrhizobium taxonomy: where to from here?. Syst Appl Microbiol 2019; 42:427–439 [View Article] [PubMed]
    [Google Scholar]
  24. Ormeño-Orrillo E, Martínez-Romero E. A genomotaxonomy view of the Bradyrhizobium genus. Front Microbiol 2019; 10:1334 [View Article]
    [Google Scholar]
  25. Ferraz Helene LC, O’Hara G, Hungria M. Characterization of Bradyrhizobium strains indigenous to Western Australia and South Africa indicates remarkable genetic diversity and reveals putative new species. Syst Appl Microbiol 2020; 43:126053 [View Article] [PubMed]
    [Google Scholar]
  26. Yates RJ, Howieson JG, Nandasena KG, O’Hara GW. Root-nodule bacteria from indigenous legumes in the north-west of Western Australia and their interaction with exotic legumes. Soil Biol Biochem 2004; 36:1319–1329 [View Article]
    [Google Scholar]
  27. Hungria M, O’Hara GW, Zilli JE, Araujo RS, Deaker R et al. Isolation and growth of growth of Rhizobia. In Working with Rhizobia Canberra: Australian Centre for International Agriculture Reserch; 2016 pp 39–60
    [Google Scholar]
  28. Delamuta JRM, Ribeiro RA, Araújo JLS, Rouws LFM, Zilli et al. Bradyrhizobium stylosanthis sp. nov., comprising nitrogen-fixing symbionts isolated from nodules of the tropical forage legume Stylosanthes spp. Int J Syst Evol Microbiol 2016; 66:3078–3087 [View Article] [PubMed]
    [Google Scholar]
  29. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  30. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  31. Schwarz G. Estimating the dimension of a model. Ann Statist 1978; 6:461–464 [View Article]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  33. Hedges SB. The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Mol Biol Evol 1992; 9:366–369 [View Article] [PubMed]
    [Google Scholar]
  34. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  35. Menna P, Barcellos FG, Hungria M. Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol 2009; 59:2934–2950 [View Article] [PubMed]
    [Google Scholar]
  36. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [PubMed]
    [Google Scholar]
  37. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38:237–245 [View Article]
    [Google Scholar]
  38. Helene LCF, Klepa MS, O’Hara G, Hungria M. Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., isolated from nodules of legumes indigenous to Western Australia. Int J Syst Evol Microbiol 2020; 70:4623–4636 [View Article]
    [Google Scholar]
  39. Klepa MS, Helene LCF, O’Hara G, Hungria M. Bradyrhizobium agreste sp. nov.,Bradyrhizobium glycinis sp. nov. and Bradyrhizobium diversitatis sp. nov., isolated from a biodiversity hotspot of the genus Glycine in Western Australia. Int J Syst Evol Microbiol 2021; 71:004742
    [Google Scholar]
  40. Durán D, Rey L, Mayo J, Zúñiga-Dávila D, Imperial J et al. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol 2014; 64:2072–2078 [View Article]
    [Google Scholar]
  41. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ. Bacterial associations with legumes. CRC Crit Rev Plant Sci 2014; 34:17–42
    [Google Scholar]
  42. Chang YL, Wang JY, Wang ET, Liu HC, Sui XH et al. Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int J Syst Evol Microbiol 2011; 61:2496–2502 [View Article] [PubMed]
    [Google Scholar]
  43. Durán D, Rey L, Navarro A, Busquets A, Imperial J et al. Bradyrhizobium valentinum sp. nov., isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in Eastern Spain. Syst Appl Microbiol 2014; 37:336–341 [View Article] [PubMed]
    [Google Scholar]
  44. Grönemeyer JL, Bünger W, Reinhold-Hurek B. Bradyrhizobium namibiense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of Lablab purpureus, hyacinth bean, in Namibia. Int J Syst Evol Microbiol 2017; 67:4884–4891 [View Article] [PubMed]
    [Google Scholar]
  45. Simões-Araújo JL, Leite J, Marie Rouws LF, Passos SR, Xavier GR et al. Draft genome sequence of Bradyrhizobium sp. strain BR 3262, an effective microsymbiont recommended for cowpea inoculation in Brazil. Braz J Microbiol 2016; 47:783–784 [View Article] [PubMed]
    [Google Scholar]
  46. Tampakaki AP, Fotiadis CT, Ntatsi G, Savvas D. Phylogenetic multilocus sequence analysis of indigenous slow-growing rhizobia nodulating cowpea (Vigna unguiculata L.) in Greece. Syst Appl Microbiol 2017; 40:179–189 [View Article] [PubMed]
    [Google Scholar]
  47. Colombi E, Perry BJ, Sullivan JT, Bekuma AA, Terpolilli JJ et al. Comparative analysis of integrative and conjugative mobile genetic elements in the genus Mesorhizobium. Microb Genom 2021; 7:000657 [View Article]
    [Google Scholar]
  48. De Meyer SE, Briscoe L, Martínez-Hidalgo P, Agapakis CM, de-Los Santos PE et al. Symbiotic Burkholderia species show diverse arrangements of nif/fix and nod genes and lack typical high-affinity cytochrome cbb3 oxidase genes. Mol Plant Microbe Interact 2016; 29:609–619 [View Article] [PubMed]
    [Google Scholar]
  49. Okubo T, Piromyou P, Tittabutr P, Teaumroong N, Minamisawa K. Origin and evolution of nitrogen fixation genes on symbiosis islands and plasmid in Bradyrhizobium. Microbes Environ 2016; 31:260–267 [View Article]
    [Google Scholar]
  50. Klepa MS, Urquiaga MC de O, Somasegaran P, Delamuta JRM, Ribeiro RA et al. Bradyrhizobium niftali sp. nov., an effective nitrogen-fixing symbiont of partridge pea [Chamaecrista fasciculata (Michx.) Greene], a native caesalpinioid legume broadly distributed in the USA. Int J Syst Evol Microbiol 2019; 69:3448–3459 [View Article] [PubMed]
    [Google Scholar]
  51. Beukes CW, Stępkowski T, Venter SN, Cłapa T, Phalane FL et al. Crotalarieae and Genisteae of the South African Great Escarpment are nodulated by novel Bradyrhizobium species with unique and diverse symbiotic loci. Mol Phylogenet Evol 2016; 100:206–218 [View Article]
    [Google Scholar]
  52. Remigi P, Zhu J, Young JPW, Masson-Boivin C. Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 2016; 24:63–75 [View Article] [PubMed]
    [Google Scholar]
  53. Paulitsch F, Delamuta JRM, Ribeiro RA, da Silva Batista JS, Hungria M. Phylogeny of symbiotic genes reveals symbiovars within legume-nodulating Paraburkholderia species. Syst Appl Microbiol 2020; 43:126151 [View Article] [PubMed]
    [Google Scholar]
  54. Wang R, Chang YL, Zheng WT, Zhang D, Zhang XX et al. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol 2013; 36:101–105 [PubMed]
    [Google Scholar]
  55. Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K. Draft genome sequences of Bradyrhizobium shewense sp. nov. ERR11T and Bradyrhizobium yuanmingense CCBAU 10071T. Stand Genomic Sci 2017; 12:1–14 [View Article]
    [Google Scholar]
  56. Martins da Costa E, Azarias Guimarães A, Soares de Carvalho T, Louzada Rodrigues T, de Almeida Ribeiro PR et al. Bradyrhizobium forestalis sp. nov., an efficient nitrogen-fixing bacterium isolated from nodules of forest legume species in the Amazon. Arch Microbiol 2018; 200:743–752 [View Article] [PubMed]
    [Google Scholar]
  57. Urquiaga MC de O, Klepa MS, Somasegaran P, Ribeiro RA, Delamuta JRM et al. Bradyrhizobium frederickii sp. nov., a nitrogen-fixing lineage isolated from nodules of the caesalpinioid species Chamaecrista fasciculata and characterized by tolerance to high temperature in vitro. Int J Syst Evol Microbiol 2019; 69:3863–3877 [View Article] [PubMed]
    [Google Scholar]
  58. Li YH, Wang R, Sui XH, Wang ET, Zhang XX et al. Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China. Syst Appl Microbiol 2019; 42:126002 [View Article]
    [Google Scholar]
  59. Fossou RK, Pothier JF, Zézé A, Perret X. Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d’Ivoire. Int J Syst Evol Microbiol 2020; 70:1421–1430 [View Article]
    [Google Scholar]
  60. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  61. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  62. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016
    [Google Scholar]
  63. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  64. Kuykendall LD, Saxena B, Devine TE, Udell SE. Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 1992; 38:501–505
    [Google Scholar]
  65. Reeve W, van Berkum P, Ardley J, Tian R, Gollagher M et al. High-quality permanent draft genome sequence of the Bradyrhizobium elkanii type strain USDA 76T, isolated from Glycine max (L.) Merr. Stand Genomic Sci 2017; 12: [View Article]
    [Google Scholar]
  66. Martins da Costa E, Azarias Guimarães A, Pereira Vicentin R, de Almeida Ribeiro PR, Ribas Leão AC et al. Bradyrhizobium brasilense sp. nov., a symbiotic nitrogen-fixing bacterium isolated from Brazilian tropical soils. Arch Microbiol 2017; 199:1211–1221 [View Article] [PubMed]
    [Google Scholar]
  67. Ramírez-Bahena MH, Peix A, Rivas R, Camacho M, Rodríguez-Navarro DN et al. Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 2009; 59:1929–1934 [View Article]
    [Google Scholar]
  68. Stacey G, Luka S, Sanjuan J, Banfalvi Z, Nieuwkoop AJ et al. nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum. J Bacteriol 1994; 176:620–633 [View Article] [PubMed]
    [Google Scholar]
  69. López-Lara IM, Blok-Tip L, Quinto C, Garcia ML, Stacey G et al. NodZ of Bradyrhizobium extends the nodulation host range of Rhizobium by adding a fucosyl residue to nodulation signals. Mol Microbiol 1996; 21:397–408 [View Article] [PubMed]
    [Google Scholar]
  70. Hungria M, Chueire L de O, Coca RG, Megı́as M. Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. Soil Biol Biochem 2001; 33:1349–1361 [View Article]
    [Google Scholar]
  71. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article]
    [Google Scholar]
  72. Yates R, Howieson J, Hungria M, Bala A, O’Hara G et al. Authentication of rhizobia and assessment of the legume symbiosis in controlled plant growth systems. In Working with Rhizobia Canberra: Australian Centre for International Agricultural Research; 2016 pp 73–108
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005446
Loading
/content/journal/ijsem/10.1099/ijsem.0.005446
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error