1887

Abstract

The intestinal tracts of termites are abundantly colonized by a diverse assemblage of spirochetes. Most of them belong to ‘termite cluster I’, a monophyletic group within the radiation of the genus that occurs exclusively in termite guts. Phylogenomic analysis revealed that members of the genus are extremely diverse and represent two separate, family-level lineages: the , which comprise the majority of the validly described species, and a second lineage that comprises the remaining members of the genus , including all members of ‘termite cluster I’ from termites and the recently isolated from cockroaches. Here, we present the formal description of fam. nov. and of the new genera required to accommodate the misplaced species in the new family as new combinations (, , and . To avoid paraphyly of , we propose fam. nov. to include the genus .

Funding
This study was supported by the:
  • Max-Planck-Gesellschaft
    • Principle Award Recipient: AndreasBrune
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005439
2022-05-31
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/5/ijsem005439.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005439&mimeType=html&fmt=ahah

References

  1. Paster BJ. Spirochaetes. In Trujillo ME, Dedysh S, De Vos P, Hedlund B, Kämpfer P. et al eds Bergey’s Manual of Systematics of Archaea and Bacteria Wiley Online Library; 2015 [View Article]
    [Google Scholar]
  2. Gupta RS, Mahmood S, Adeolu M. A phylogenomic and molecular signature based approach for characterization of the phylum Spirochaetes and its major clades: proposal for a taxonomic revision of the phylum. Front Microbiol 2013; 4:217 [View Article] [PubMed]
    [Google Scholar]
  3. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  4. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria . Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  5. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  6. Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 2020; 38:1079–1086 [View Article] [PubMed]
    [Google Scholar]
  7. Song Y, Hervé V, Radek R, Pfeiffer F, Zheng H et al. Characterization and phylogenomic analysis of Breznakiella homolactica gen. nov. sp. nov. indicate that termite gut treponemes evolved from non-acetogenic spirochetes in cockroaches. Environ Microbiol 2021; 23:4228–4245 [View Article]
    [Google Scholar]
  8. Breznak JA. Hindgut spirochetes of termites and Cryptocercus punctulatus . In Krieg NR, Holt JG. eds Bergey’s Manual of Systematic Bacteriology vol 1 Williams & Wilkins, Baltimore: 1984 pp 67–70
    [Google Scholar]
  9. Breznak JA, Leadbetter JR. Termite gut spirochetes. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. eds The Prokaryotes, 3rd edn. vol 7 New York: Springer; 2006 pp 318–329
    [Google Scholar]
  10. Ohkuma M, Brune A. Diversity, structure, and evolution of the termite gut microbial community. In Bignell D, Roisin Y, Lo N. eds Biology of Termites: A Modern Synthesis Dordrecht: Springer; 2011 pp 413–438
    [Google Scholar]
  11. Breznak JA, Canale-Parola E. Biology of nonpathogenic, host-associated spirochetes. CRC Crit Rev Microbiol 1973; 2:457–489 [View Article]
    [Google Scholar]
  12. Margulis L, Hinkle G. Large symbiotic spirochetes: Clevelandina, Cristispira, Diplocalyx, Hollandina, and Pillotina. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H. eds The Prokaryotes, 2nd edn. vol 4 New York: Springer; 1992 pp 3965–3978 [View Article]
    [Google Scholar]
  13. Wier A, Ashen J, Margulis L. Canaleparolina darwiniensis, gen. nov., sp. nov., and other pillotinaceous spirochetes from insects. Int Microbiol 2000; 3:213–223
    [Google Scholar]
  14. Radek R, Nitsch G. Ectobiotic spirochetes of flagellates from the termite Mastotermes darwiniensis: attachment and cyst formation. Eur J Protistol 2007; 43:281–294 [View Article] [PubMed]
    [Google Scholar]
  15. Paster BJ. Other organisms. Hindgut spirochetes of termites and cockroaches. In Trujillo ME, Dedysh S, De Vos P, Hedlund B, Kämpfer P. et al eds Bergey’s Manual of Systematics of Archaea and Bacteria Wiley Online Library; 2018 [View Article]
    [Google Scholar]
  16. Berchtold M, Ludwig W, König H. 16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt. FEMS Microbiol Lett 1994; 123:269–273 [View Article] [PubMed]
    [Google Scholar]
  17. Ohkuma M, Kudo T. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus . Appl Environ Microbiol 1996; 62:461–468 [View Article] [PubMed]
    [Google Scholar]
  18. Paster BJ, Dewhirst FE, Cooke SM, Fussing V, Poulsen LK et al. Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 1996; 62:347–352 [View Article] [PubMed]
    [Google Scholar]
  19. Lilburn TG, Schmidt TM, Breznak JA. Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1999; 1:331–345 [View Article] [PubMed]
    [Google Scholar]
  20. Ohkuma M, Iida T, Kudo T. Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett 1999; 181:123–129 [View Article] [PubMed]
    [Google Scholar]
  21. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  22. Parker CT, Tindall BJ, Garrity GM. International code of nomenclature of prokaryotes. Prokaryotic code (2008 revision). Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article]
    [Google Scholar]
  23. Koelschbach JS, Mouttaki H, Pickl C, Heipieper HJ, Rachel R et al. Rectinema cohabitans gen. nov., sp. nov., a rod-shaped spirochaete isolated from an anaerobic naphthalene-degrading enrichment culture. Int J Syst Evol Microbiol 2017; 67:1288–1295 [View Article]
    [Google Scholar]
  24. Momper L, Semler A, Lu GS, Miyazaki M, Imachi H et al. Rectinema subterraneum sp. nov, a chemotrophic spirochaete isolated from the deep terrestrial subsurface. Int J Syst Evol Microbiol 2020; 70:4739–4747 [View Article] [PubMed]
    [Google Scholar]
  25. Zuelzer M. Über Spirochaeta plicatilis Ehrenberg und deren Verwandtschaftsbeziehungen. Arch Protistenkd 1912; 24:1–59
    [Google Scholar]
  26. Blakemore RP, Canale-Parola E. Morphological and ecological characteristics of Spirochaeta plicatilis . Archiv Mikrobiol 1973; 89:273–289 [View Article]
    [Google Scholar]
  27. Pohlschroeder M, Leschine SB, Canale-Parola E. Spirochaeta caldaria sp. nov., a thermophilic bacterium that enhances cellulose degradation by Clostridium thermocellum . Arch Microbiol 1994; 161:17–24 [View Article]
    [Google Scholar]
  28. Dröge S, Rachel R, Radek R, König H. Treponema isoptericolens sp. nov., a novel spirochaete from the hindgut of the termite Incisitermes tabogae . Int J Syst Evol Microbiol 2008; 58:1079–1083 [View Article] [PubMed]
    [Google Scholar]
  29. Graber JR, Leadbetter JR, Breznak JA. Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 2004; 70:1315–1320 [View Article] [PubMed]
    [Google Scholar]
  30. Canale-Parola E, Holt SC, Udris Z. Isolation of free-living, anaerobic spirochetes. Archiv Mikrobiol 1967; 59:41–48 [View Article]
    [Google Scholar]
  31. Canale-Parola E, Udris Z, Mandel M. The classification of free-living spirochetes. Archiv Mikrobiol 1968; 63:385–397 [View Article] [PubMed]
    [Google Scholar]
  32. Holt SC, Canale-Parola E. Fine structure of Spirochaeta stenostrepta, a free-living, anaerobic spirochete. J Bacteriol 1968; 96:822–835 [View Article] [PubMed]
    [Google Scholar]
  33. Leschine S, Paster BJ. Spirochaeta. In Trujillo ME, Dedysh S, De Vos P, Hedlund B, Kämpfer P. et al eds Bergey’s Manual of Systematics of Archaea and Bacteria Wiley Online Library; 2015 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005439
Loading
/content/journal/ijsem/10.1099/ijsem.0.005439
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error