1887

Abstract

A novel Gram-stain-negative, rod-shaped, non-motile, aerobic bacterium isolated from a sea bean flower [ (Sw.) DC.] collected in Surat Thani Province, Thailand, and designated as AH18 was characterized on the basis of polyphasic taxonomy. The phylogenetic analysis of 16S rRNA gene revealed that strain AH18 represented a member of the genus . In the 16S rRNA gene sequence analysis, the strain's closest phylogenetic neighbour was TBRC 376. The draft genome size of strain AH18 was 2613495 bp, and its DNA G+C content was 52.0 mol%. The strain showed 90.3 and 76.3% pairwise-determined whole-genome average nucleotide identity and 39.8 and 19.6% digital DNA–DNA hybridization values with TBRC 376 and TBRC 7768, respectively. The 16S rRNA gene sequences and phylogenomic analysis revealed that the strain clustered with the members of the genus but was located in a distinct branch closely related to TBRC 376. The predominant cellular fatty acids of the strain were summed feature 8 (C 6 and/or C 7), C and C 2OH (>5%). The major respiratory ubiquinone was Q-10. In addition, strain AH18 was substantiated by differences in several physiological characteristics and by MALDI-TOF profiling. On the basis of the results obtained from phenotypic, chemotaxonomic, phylogenetic and genomic analyses, the strain clearly represented a novel species within the genus , for which the name sp. nov. (AH18=TBRC 2177=NBRC 115156) is proposed. An emended description of the genus is also given.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005428
2022-06-10
2024-06-21
Loading full text...

Full text loading...

References

  1. Pedraza RO. Acetic acid bacteria as plant growth promoters. In Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A. eds Acetic Acid Bacteria: Ecology and Physiology Tokyo: Springer Japan; 2016 pp 101–120
    [Google Scholar]
  2. Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A. Acetic Acid Bacteria Ecology and Physiology, 1st edn. Tokyo: Springer Japan; 2016 [View Article]
    [Google Scholar]
  3. De Roos J, De Vuyst L. Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol 2018; 49:115–119 [View Article] [PubMed]
    [Google Scholar]
  4. Sengun IY, Mas A, Bravo AH, Taban BM, Yamada Y. Acetic Acid Bacteria: Fundamentals and Food Applications Boca Raton, FL: CRC Press; 2017 [View Article]
    [Google Scholar]
  5. Gomes RJ, Borges M de F, Rosa M de F, Castro-Gómez RJH, Spinosa WA. Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technol Biotechnol 2018; 56:139–151 [View Article] [PubMed]
    [Google Scholar]
  6. Garrity GM, Bell JA, Lilburn T. Class I. Alphaproteobacteria class. nov. In Brenner DJ, Krieg NR, Staley JT. eds Bergey’s Manual of Systematic Bacteriology Springer; 2005 pp 1–574
    [Google Scholar]
  7. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  8. Guzman J, Vilcinskas A. Genome analysis suggests the bacterial family Acetobacteraceae is a source of undiscovered specialized metabolites. Antonie van Leeuwenhoek 2022; 115:41–58 [View Article] [PubMed]
    [Google Scholar]
  9. Parte AC. LPSN - List of Prokaryotic Names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  10. Miller DL, Smith EA, Newton ILG. A bacterial symbiont protects honey bees from fungal disease. mBio 2021; 12:e0050321 [View Article] [PubMed]
    [Google Scholar]
  11. Madhaiyan M, Saravanan VS, Jovi DBSS, Lee H, Thenmozhi R et al. Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiol Res 2004; 159:233–243 [View Article] [PubMed]
    [Google Scholar]
  12. Jojima Y, Mihara Y, Suzuki S, Yokozeki K, Yamanaka S et al. Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 2004; 54:2263–2267 [View Article] [PubMed]
    [Google Scholar]
  13. Yukphan P, Malimas T, Potacharoen W, Tanasupawat S, Tanticharoen M et al. Neoasaia chiangmaiensis gen. nov., sp. nov., a novel osmotolerant acetic acid bacterium in the alpha-Proteobacteria. J Gen Appl Microbiol 2005; 51:301–311 [View Article]
    [Google Scholar]
  14. Malimas T, Chaipitakchonlatarn W, Thi Lan Vu H, Yukphan P, Muramatsu Y et al. Swingsia samuiensis gen. nov., sp. nov., an osmotolerant acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 2013; 59:375–384 [View Article]
    [Google Scholar]
  15. Yukphan P, Malimas T, Muramatsu Y, Potacharoen W, Tanasupawat S et al. Neokomagataea gen. nov., with descriptions of Neokomagataea thailandica sp. nov. and Neokomagataea tanensis sp. nov., osmotolerant acetic acid bacteria of the α-Proteobacteria. Biosci Biotechnol Biochem 2011; 75:419–426 [View Article]
    [Google Scholar]
  16. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  17. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963; 72:619–629 [View Article] [PubMed]
    [Google Scholar]
  18. Ezaki T, Yamamoto N, Ninomiya K, Suzuki S, Yabuuchi E. Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii, and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov. Int J Syst Bacteriol 1983; 33:683–698 [View Article]
    [Google Scholar]
  19. Yukphan P, Potacharoen W, Tanasupawat S, Tanticharoen M, Yamada Y. Asaia krungthepensis sp. nov., an acetic acid bacterium in the alpha-Proteobacteria. Int J Syst Evol Microbiol 2004; 54:313–316 [View Article] [PubMed]
    [Google Scholar]
  20. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  21. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  22. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  25. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  28. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  31. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  32. Krueger F. Trim Galore!: A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files; 2015 http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
  33. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 2016; 44:W3–W10 [View Article] [PubMed]
    [Google Scholar]
  34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  35. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  36. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  37. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article] [PubMed]
    [Google Scholar]
  38. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article] [PubMed]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  40. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  43. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  44. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  45. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article] [PubMed]
    [Google Scholar]
  46. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  47. Kim J, Na S-I, Kim D, Chun J. UBCG2: Up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article] [PubMed]
    [Google Scholar]
  48. Kitts PA, Church DM, Thibaud-Nissen F, Choi J, Hem V et al. Assembly: a resource for assembled genomes at NCBI. Nucleic Acids Res 2016; 44:D73–80 [View Article] [PubMed]
    [Google Scholar]
  49. Munk AC, Copeland A, Lucas S, Lapidus A, Del Rio TG et al. Complete genome sequence of Rhodospirillum rubrum type strain (S1). Stand Genomic Sci 2011; 4:293–302 [View Article] [PubMed]
    [Google Scholar]
  50. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 2013; 41:e121 [View Article] [PubMed]
    [Google Scholar]
  51. Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res 2019; 47:W5–W10 [View Article]
    [Google Scholar]
  52. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  53. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  54. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article]
    [Google Scholar]
  55. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2017; 35:518–522 [View Article]
    [Google Scholar]
  56. Asai T, Iizuka H, Komagata K. The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 1964; 10:95–126 [View Article]
    [Google Scholar]
  57. Yamada Y, Okada Y, Kondo K. Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. J Gen Appl Microbiol 1976; 22:237–245 [View Article]
    [Google Scholar]
  58. Gosselé F, Swings J, De Ley J. A rapid, simple and simultaneous detection of 2-keto-, 5-keto-and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. Zentralblatt für Bakteriologie: I Abt Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 1980; 1:178–181 [View Article]
    [Google Scholar]
  59. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. In Colwell RR, Grigorova R. eds Methods in Microbiology 19: Academic Press; 1988 pp 161–207
    [Google Scholar]
  60. Sasser M. eds Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Technical Note# 1012001 Newark: MIDI Inc;
    [Google Scholar]
  61. Matsuda N, Matsuda M, Notake S, Yokokawa H, Kawamura Y et al. Evaluation of a simple protein extraction method for species identification of clinically relevant staphylococci by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2012; 50:3862–3866 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005428
Loading
/content/journal/ijsem/10.1099/ijsem.0.005428
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error