1887

Abstract

An opaque, pink-coloured, gram-positive, aerobic bacteria (designated as FBM22-1), was isolated from microbial fermentation bed material from a pig farm in northwestern China. Optimal growth occurred at 30–37 °C, pH 7.0 and with 0.5 % NaCl (w/v). The strain had nitrification and denitrification functions. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel isolate belonged to the genus . Strain FBM22-1 was closely related to NBRC 100606 and NBRC 16069, with 16S rRNA gene sequence similarities of 97.9 and 97.7 %, respectively. The predominant menaquinone in strain FBM22-1 was MK-8(H). The cellular fatty acids consisted primarily of Cω7 and/or C ω6, C and 10-methyl C. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and glycolipid. The G+C content of strain FBM22-1 was 68.64 mol%. Based on the phenotypic, phylogenetic and chemotaxonomic characterization results, in combination with low values of digital DNA–DNA hybridization between strain FBM22-1 and its closest neighbours, FBM22-1 represents a novel species of the genus , for which the name p. nov. is proposed; the type strain is FBM22-1 (=KCTC 49502=CCTCC AB2020275).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005426
2022-07-14
2024-04-28
Loading full text...

Full text loading...

References

  1. Alvarez HM. Biology of Rrhodococcus Springer; 2019
    [Google Scholar]
  2. Wilhelm Z. Über die Wurzelbräune der Lupinen, eine neue Pilzkrankheit. Zeitschrift für Pflanzenkrankheiten 189172–76
    [Google Scholar]
  3. Bunch AW. Biotransformation of nitriles by rhodococci. Antonie van Leeuwenhoek 1998; 74:89–97 [View Article] [PubMed]
    [Google Scholar]
  4. Goodfellow M, Jones AL, Maldonado LA, Salanitro J. Rhodococcus aetherivorans sp. nov., a new species that contains methyl t-butyl ether-degrading actinomycetes. Syst Appl Microbiol 2004; 27:61–65 [View Article] [PubMed]
    [Google Scholar]
  5. Kämpfer P, Dott W, Martin K, Glaeser SP. Rhodococcus defluvii sp. nov., isolated from wastewater of a bioreactor and formal proposal to reclassify [Corynebacterium hoagii] and Rhodococcus equi as Rhodococcus hoagii comb. nov. Int J Syst Evol Microbiol 2014; 64:755–761 [View Article] [PubMed]
    [Google Scholar]
  6. Sheng HM, Gao HS, Xue LG, Ding S, Song CL et al. Analysis of the composition and characteristics of culturable endophytic bacteria within subnival plants of the Tianshan Mountains, Northwestern China. Curr Microbiol 2011; 62:923–932 [View Article] [PubMed]
    [Google Scholar]
  7. Konishi M, Nishi S, Fukuoka T, Kitamoto D, Watsuji T-O et al. Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant. Mar Biotechnol 2014; 16:484–493 [View Article] [PubMed]
    [Google Scholar]
  8. Shevtsov A, Tarlykov P, Zholdybayeva E, Momynkulov D, Sarsenova A et al. Draft genome sequence of Rhodococcus erythropolis DN1, a crude oil biodegrader. Genome Announc 2013; 1:e00846-13 [View Article] [PubMed]
    [Google Scholar]
  9. Lim YJ, Gi KH, Hwan LY, Ran KH, Hwan PD. First report of Rhodococcus fascians causing fasciation of lilies (Lilium longiflorum Thunb.) in South Korea. Plant Dis 2020 [View Article]
    [Google Scholar]
  10. Silva LJ, Souza DT, Genuario DB, Hoyos HAV, Santos SN et al. Rhodococcus psychrotolerans sp. nov., isolated from rhizosphere of Deschampsia antarctica. Antonie vVan Leeuwenhoek 2018; 111:629–636 [View Article] [PubMed]
    [Google Scholar]
  11. Takai S, Takeuchi T, Tsubaki S. Isolation of Rhodococcus (Corynebacterium) equi and atypical mycobacteria from the lymph nodes of healthy pigs. Jpn J Vet Sci 1986; 48:445–448 [View Article] [PubMed]
    [Google Scholar]
  12. Yoon JH, Cho YG, Kang SS, Kim SB, Lee ST et al. Rhodococcus koreensis sp. nov., a 2,4-dinitrophenol-degrading bacterium. Int J Syst Evol Microbiol 2000; 50:1193–1201 [View Article] [PubMed]
    [Google Scholar]
  13. Warhurst AM, Fewson CA. Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 1994; 14:29–73 [View Article]
    [Google Scholar]
  14. Chen H, Piao A-L, Tan X, Nogi Y, Yeo J et al. Sphingorhabdus buctiana sp. nov., isolated from fresh water, and reclassification of Sphingopyxis contaminans as Sphingorhabdus contaminans comb. nov. Antonie van Leeuwenhoek 2017; 111:323–331 [View Article] [PubMed]
    [Google Scholar]
  15. Alias-Villegas C, Jurado V, Laiz L, Saiz-Jimenez C. Sphingopyxis italica sp. nov., isolated from Roman catacombs. Int J Syst EvolMicrobiol 2013; 63:2565–2569 [View Article] [PubMed]
    [Google Scholar]
  16. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  17. Yoshimoto T, Nagai F, Fujimoto J, Watanabe K, Mizukoshi H et al. Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolates from activated sludge in wastewater treatment plants. Appl Environ Microbiol 2004; 70:5283–5289 [View Article] [PubMed]
    [Google Scholar]
  18. Rehfuss M, Urban J. Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources. Syst Appl Microbiol 2005; 28:695–701 [View Article] [PubMed]
    [Google Scholar]
  19. Subhash Y, Tushar L, Sasikala C, Ramana CV. Falsirhodobacter halotolerans gen. nov., sp. nov., isolated from dry soils of a solar saltern. Int J Syst Evol Microbiol 2013; 63:2132–2137 [View Article]
    [Google Scholar]
  20. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  21. Collins MD, Goodfellow M, Minnikin DE. Isoprenoid quinones in the classification of coryneform and related bacteria. J Gen Microbiol 1979; 110:127–136 [View Article] [PubMed]
    [Google Scholar]
  22. Liu Q-Q, Wang Y, Li J, Du Z-J, Chen G-J. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014; 64:2204–2209 [View Article] [PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  24. Zhang W, Sun Z. Random local neighbor joining: a new method for reconstructing phylogenetic trees. Mol Phylogenet Evol 2008; 47:117–128 [View Article] [PubMed]
    [Google Scholar]
  25. Acitas S, Yenilmez I, Senoglu B, Kantar YM. Modified maximum likelihood estimator under the Jones and Faddy’s skew t-error distribution for censored regression model. J Appl Stat 2020; 48:2136–2151 [View Article]
    [Google Scholar]
  26. Diehl AG, Boyle AP. MapGL: inferring evolutionary gain and loss of short genomic sequence features by phylogenetic maximum parsimony. BMC Bioinformatics 2020; 21:1–9 [View Article] [PubMed]
    [Google Scholar]
  27. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article] [PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  29. Bhattacharya D, de Los Santos Villalobos S, Ruiz VV, Selvin J, Mukherjee J. Bacillus rugosus sp. nov. producer of a diketopiperazine antimicrobial, isolated from marine sponge Spongia officinalis L. Antonie vVan Leeuwenhoek 2020; 113:1675–1687 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  31. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  32. Stoecker MA, Herwig RP, Staley JT. Rhodococcus zopfii sp. nov., a toxicant-degrading bacterium. Int J Syst Bacteriol 1994; 44:106–110 [View Article] [PubMed]
    [Google Scholar]
  33. Su X, Liu Y, Hashmi MZ, Hu J, Ding L et al. Rhodococcus biphenylivorans sp. nov., a polychlorinated biphenyl-degrading bacterium. Antonie vVan Leeuwenhoek 2015; 107:55–63 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005426
Loading
/content/journal/ijsem/10.1099/ijsem.0.005426
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error