1887

Abstract

Phytopathogenic bacterial strains (MAFF 311094, MAFF 311095, MAFF 311096 and MAFF 311097), which were isolated from rot lesions of parsley () sampled in Miyagi, Japan, were subjected to polyphasic characterization to determine their taxonomic position. The cells were Gram-reaction-negative, aerobic, non-spore-forming, motile with one or two polar flagella and rod-shaped. The 16S rRNA gene sequences analyses revealed that the strains belong to the genus , exhibiting the highest sequence similarity to P7 (99.93% sequence similarity), MAFF 301449 (99.93 %), 14-3 (99.86 %), MAFF 212408 (99.86 %) and CMS 35 (99.79 %). The genomic DNA G+C content was 60.1 mol%, and the major cellular fatty acids (>5 % of the total fatty acids) were C, summed feature 3 (C 7/C 6), summed feature 8 (C 7/C 6) and C cyclo. The sequence-based phylogenetic and whole genome-based phylogenomic analyses demonstrated that the strains are a member of the subgroup, but their phylogenetic position does not match those of any members of this subgroup. The average nucleotide identity and digital DNA–DNA hybridization values between the strains and their closely related species were ≤90.64% and ≤41.9 %, respectively, which were below the thresholds for prokaryotic species delineation (95–96 and 70%, respectively). Phenotypic characteristics, pathogenicity toward parsley and cellular fatty acid composition could differentiate the strains from their closest relatives. The phenotypic, chemotaxonomic and genotypic data presented in this study revealed that the strains constitute a novel species, for which we propose the name sp. nov., with MAFF 311094 (=ICMP 24279) being the type strain.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005424
2022-06-13
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/6/ijsem005424.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005424&mimeType=html&fmt=ahah

References

  1. Osada S. Bacterial rot of parsley (Petroselinum crispum Nym.), caused by Pseudomonas marginalis pv. marginalis (Brown 1918) Stevens 1925. Ann Rept Plant Prot North Japan 1994; 45:80–83 [View Article]
    [Google Scholar]
  2. The Phytopathological Society of Japan Common Names of Plant Diseases in Japan Tokyo, Japan: The Phytopathological Society of Japan; 2021
    [Google Scholar]
  3. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article] [PubMed]
    [Google Scholar]
  4. Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J et al. Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas. Syst Appl Microbiol 2012; 35:455–464 [View Article] [PubMed]
    [Google Scholar]
  5. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015; 6:214 [View Article] [PubMed]
    [Google Scholar]
  6. Sawada H, Fujikawa T, Nishiwaki Y, Horita H. Pseudomonas kitaguniensis sp. nov., a pathogen causing bacterial rot of Welsh onion in Japan. Int J Syst Evol Microbiol 2020; 70:3018–3026 [View Article] [PubMed]
    [Google Scholar]
  7. Sawada H, Fujikawa T, Horita H. Pseudomonas brassicae sp. nov., a pathogen causing head rot of broccoli in Japan. Int J Syst Evol Microbiol 2020; 70:5319–5329 [View Article] [PubMed]
    [Google Scholar]
  8. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  9. Stecher G, Tamura K, Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol Biol Evol 2020; 37:1237–1239 [View Article] [PubMed]
    [Google Scholar]
  10. Sawada H, Fujikawa T, Tsuji M, Satou M. Pseudomonas allii sp. nov., a pathogen causing soft rot of onion in Japan. Int J Syst Evol Microbiol 2021; 71:004582 [View Article]
    [Google Scholar]
  11. Palleroni NJ. Pseudomonas. In Brenner DJ, Krieg NR, Staley JT. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 2 Boston: Springer; 2005 pp 323–379
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  13. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1 [View Article]
    [Google Scholar]
  14. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  15. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  16. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  17. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  18. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  19. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  20. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article] [PubMed]
    [Google Scholar]
  21. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  23. Schaad NW, Jones JB, Chun W. eds Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd edn. St. Paul, MN, USA: APS Press; 2001
    [Google Scholar]
  24. Lelliott RA, Billing E, Hayward AC. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol 1966; 29:470–489 [View Article] [PubMed]
    [Google Scholar]
  25. Sawada H, Horita H, Misawa T, Takikawa Y. Pseudomonas grimontii, causal agent of turnip bacterial rot disease in Japan. J Gen Plant Pathol 2019; 85:413–423 [View Article]
    [Google Scholar]
  26. Sawada H, Fujikawa T, Osada S, Satou M. Pseudomonas cyclaminis sp. nov., a pathogen causing bacterial bud blight of cyclamen in Japan. Int J Syst Evol Microbiol 2021; 71:004723 [View Article] [PubMed]
    [Google Scholar]
  27. Duman M, Mulet M, Saticioglu IB, Altun S, Gomila M et al. Pseudomonas sivasensis sp. nov. isolated from farm fisheries in Turkey. Syst Appl Microbiol 2020; 43:126103 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005424
Loading
/content/journal/ijsem/10.1099/ijsem.0.005424
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error