1887

Abstract

Three Gram-stain-positive bacterial strains (designated F502-1, F575-4 and F582-1) were isolated from the gut of honeybee (). These strains were characterized using a polyphasic taxonomic approach. Results of 16S rRNA gene sequence analysis indicated that strain F502-1 was phylogenetically related to the type strains of , and , having 98.7–99.9 % 16S rRNA gene sequence similarities, 84.6–92.5 %  sequence similarities and 95.2–99.0 %  sequence similarities, and that strains F575-4 and F582-1 were closely related to the type strain of , having 99.7 and 99.4 % 16S rRNA gene sequence similarities, respectively. Strains F575-4 and F582-1 had less than 88.7 % and 96.4 % sequence similarities to strain F502-1 and type strains of all species. The average nucleotide identity and digital DNA–DNA hybridization values between strains F502-1, F575-4, F582-1 and type strains of all species were less than 91.3 and 43.5 %, respectively, confirming that they represent two novel species within the genus . Based upon the data obtained in the present study, two novel species, sp. nov. and sp. nov., are proposed and the type strains are F502-1 (=JCM 34500=CCTCC AB 2021026) and F575-4 (=JCM 34501=CCTCC AB 2021028), respectively.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award no. 31471594)
    • Principle Award Recipient: ChunTao Gu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005402
2022-05-31
2024-06-19
Loading full text...

Full text loading...

References

  1. Liu DD, Li YQ, Zhang LP, Ding W, Tian WL et al. Apilactobacillus nanyangensis sp. nov., Secundilactobacillus hailunensis sp. nov., Secundilactobacillus yichangensis sp. nov., Levilactobacillus andaensis sp. nov., Levilactobacillus wangkuiensis sp. nov., Levilactobacillus lanxiensis sp. nov., Lacticaseibacillus mingshuiensis sp. nov. and Lacticaseibacillus suilingensis sp. nov., isolated from traditional Chinese pickle and the gut of honeybee (Apis mellifera). Int J Syst Evol Microbiol 2021; 71:004898 [View Article]
    [Google Scholar]
  2. Li TT, Liu DD, Fu ML, Gu CT. Proposal of Lactobacillus kosoi Chiou et al. 2018 as a later heterotypic synonym of Lactobacillus micheneri McFrederick et al. 2018, elevation of Lactobacillus plantarum subsp. argentoratensis to the species level as Lactobacillus argentoratensis sp. nov., and Lactobacillus zhaodongensis sp. nov., isolated from traditional Chinese pickle and the intestinal tract of a honey bee (Apis mellifera). Int J Syst Evol Microbiol 2020; 70:3123–3133 [View Article]
    [Google Scholar]
  3. An D, Cai S, Dong X. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 2006; 56:2043–2048 [View Article] [PubMed]
    [Google Scholar]
  4. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151:2141–2150 [View Article] [PubMed]
    [Google Scholar]
  5. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  6. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989; 29:170–179 [View Article] [PubMed]
    [Google Scholar]
  7. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  8. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  9. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007; 57:2777–2789 [View Article] [PubMed]
    [Google Scholar]
  10. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  11. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015; 31:587–589 [View Article] [PubMed]
    [Google Scholar]
  12. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  13. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  14. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  15. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [View Article] [PubMed]
    [Google Scholar]
  16. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  18. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  20. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  21. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101 Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005402
Loading
/content/journal/ijsem/10.1099/ijsem.0.005402
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error