1887

Abstract

Seven bacterial strains isolated from bovine endocarditis in six animals from different geographic regions were investigated in a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences placed all seven isolates on a distinct, monophyletic cluster in the family with closest similarity to type strains of (97.06 %) and (96.34 %). Whole genome sequence analysis of isolates confirmed their species status, with an average nucleotide identity >96 % between isolates and <80 % to other type species of genera of while digital DNA–DNA hybridization values were >80 % and<18 %, respectively. The DNA G+C content was 42.5–43.0 mol%. Whole genome sequence based phylogeny showed the isolates being monophyletic and separated from established genera, thereby forming a new genus within the family . Similarly, analysis of MALDI-TOF MS reference spectra clustered the isolates close together and clearly separated from other genera, making this the method of choice for identification. Biochemical markers based on classical as well as commercial identification schemes allowed separation from closely related genera, even though the new taxon is biochemically not very active. Major fatty acids are C, C and C. The major quinone is ubiquinone Q-8. In the polar lipid profile, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phospholipid were predominant. We propose the novel genus with the type species gen. nov., sp. nov. The type strain is CCUG 44465 (=DSM 113289=JF 2483) isolated from a cow with endocarditis in Switzerland.

Keyword(s): cattle , endocarditis and Neisseriaceae
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005387
2022-05-11
2024-04-26
Loading full text...

Full text loading...

References

  1. Adeolu M, Gupta RS. Phylogenomics and molecular signatures for the order Neisseriales: proposal for division of the order Neisseriales into the emended family Neisseriaceae and Chromobacteriaceae fam. nov. Antonie van Leeuwenhoek 2013; 104:1–24 [View Article] [PubMed]
    [Google Scholar]
  2. Kwong WK, Moran NA. Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order “Enterobacteriales” of the Gammaproteobacteria. Int J Syst Evol Microbiol 2013; 63:2008–2018 [View Article]
    [Google Scholar]
  3. Chen S, Rudra B, Gupta RS. Phylogenomics and molecular signatures support division of the order Neisseriales into emended families Neisseriaceae and Chromobacteriaceae and three new families Aquaspirillaceae fam. nov., Chitinibacteraceae fam. nov., and Leeiaceae fam. nov. Syst Appl Microbiol 2021; 44:126251 [View Article] [PubMed]
    [Google Scholar]
  4. Tønjum T. Neisseria. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons; 2015 pp 1–48
    [Google Scholar]
  5. Tønjum T. Alysiella. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons; 2005 pp 1–5
    [Google Scholar]
  6. Xie CH, Yokota A. Phylogenetic analysis of Alysiella and related genera of Neisseriaceae: proposal of Alysiella crassa comb. nov., Conchiformibium steedae gen. nov., comb. nov., Conchiformibium kuhniae sp. nov. and Bergeriella denitrificans gen. nov., comb. nov. J Gen Appl Microbiol 2005; 51:1–10 [View Article]
    [Google Scholar]
  7. Hering S, Jansson MK, Buhl MEJ. Eikenella glucosivorans sp. nov., isolated from a human throat swab, and emendation of the genus Eikenella to include saccharolytic species. Int J Syst Evol Microbiol 2021; 71:004997 [View Article] [PubMed]
    [Google Scholar]
  8. Weyant RS. Kingella. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons; 2015 pp 1–8
    [Google Scholar]
  9. Sly LI. Incertae sedis XV. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons; 2015 pp 1–4
    [Google Scholar]
  10. Busse H-J, Kämpfer P, Szostak MP, Rückert C, Spergser J. Paralysiella testudinis gen. nov., sp. nov., isolated from the cloaca of a toad-headed turtle (Mesoclemmys nasuta). Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  11. Ahmed SS, Nitu M, Hicks S, Hedlund L, Slaven JE et al. Propofol-based procedural sedation with or without low-dose ketamine in children. J Pediatr Intensive Care 2016; 5:1–6 [View Article] [PubMed]
    [Google Scholar]
  12. Wertz JT, Breznak JA. Stenoxybacter acetivorans gen. nov., sp. nov., an acetate-oxidizing obligate microaerophile among diverse O2-consuming bacteria from termite guts. Appl Environ Microbiol 2007; 73:6819–6828 [View Article] [PubMed]
    [Google Scholar]
  13. Vela AI, Collins MD, Lawson PA, García N, Domínguez L et al. Uruburuella suis gen. nov., sp. nov., isolated from clinical specimens of pigs. Int J Syst Evol Microbiol 2005; 55:643–647 [View Article]
    [Google Scholar]
  14. Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J et al. Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons; 2015 pp 1–11
    [Google Scholar]
  15. Wadhwa N, Berg HC. Bacterial motility: machinery and mechanisms. Nat Rev Microbiol 2022; 20:161–173 [View Article] [PubMed]
    [Google Scholar]
  16. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  17. Kuhnert P, Capaul SE, Nicolet J, Frey J. Phylogenetic positions of Clostridium chauvoei and Clostridium septicum based on 16S rRNA gene sequences. Int J Syst Bacteriol 1996; 46:1174–1176 [View Article] [PubMed]
    [Google Scholar]
  18. Korczak B, Christensen H, Emler S, Frey J, Kuhnert P. Phylogeny of the family Pasteurellaceae based on rpoB sequences. Int J Syst Evol Microbiol 2004; 54:1393–1399 [View Article] [PubMed]
    [Google Scholar]
  19. Das S, Dash HR, Mangwani N, Chakraborty J, Kumari S. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J Microbiol Methods 2014; 103:80–100 [View Article] [PubMed]
    [Google Scholar]
  20. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014; 31:1077–1088 [View Article] [PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  25. Kuhnert P, Korczak BM. Prediction of whole-genome DNA-DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiology 2006; 152:2537–2548 [View Article] [PubMed]
    [Google Scholar]
  26. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007; 35:W52–7 [View Article] [PubMed]
    [Google Scholar]
  27. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–21 [View Article] [PubMed]
    [Google Scholar]
  28. Morabito S, Specchi S, Auriemma E, Ferro S, Kuhnert P et al. Computed tomographic and ultrasonographic findings of abdominal arterial pseudoaneurysms caused by systemic mycosis in dogs. J Small Anim Pract 2020; 61:300–307 [View Article] [PubMed]
    [Google Scholar]
  29. Liu M, Li X, Xie Y, Bi D, Sun J et al. ICEberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Res 2019; 47:D660–D665 [View Article] [PubMed]
    [Google Scholar]
  30. Kuhnert P, Bisgaard M, Korczak BM, Schwendener S, Christensen H et al. Identification of animal Pasteurellaceae by MALDI-TOF mass spectrometry. J Microbiol Methods 2012; 89:1–7 [View Article] [PubMed]
    [Google Scholar]
  31. Rau J, Eisenberg T, Männig A, Wind C, Lasch R et al. MALDI-UP–an internet platform for the exchange of mass spectra. Aspects Food Control Animal Health 2016; 01:1–17
    [Google Scholar]
  32. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 06:152–155
    [Google Scholar]
  33. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  34. Buczinski S, Rezakhani A, Boerboom D. Heart disease in cattle: diagnosis, therapeutic approaches and prognosis. Vet J 2010; 184:258–263 [View Article] [PubMed]
    [Google Scholar]
  35. Caivano D, Marchesi MC, Boni P, Passamonti F, Venanzi N et al. Mural endocarditis and embolic pneumonia due to Trueperella pyogenes in an adult cow with ventricular septal defect. Vet Sci 2021; 8:318 [View Article] [PubMed]
    [Google Scholar]
  36. Kutzer P, Schulze C, Engelhardt A, Wieler LH, Nordhoff M. Helcococcus ovis, an emerging pathogen in bovine valvular endocarditis. J Clin Microbiol 2008; 46:3291–3295 [View Article] [PubMed]
    [Google Scholar]
  37. Antezack A, Boxberger M, Rolland C, Monnet-Corti V, La Scola B. Isolation and characterization of Kingella bonacorsii sp. nov., a novel Kingella species detected in a stable periodontitis subject. Pathogens 2021; 10:240 [View Article] [PubMed]
    [Google Scholar]
  38. Jenkins CL, Kuhn DA, Daly KR. Fatty acid composition of Simonsiella strains. Arch Microbiol 1977; 113:209–213 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005387
Loading
/content/journal/ijsem/10.1099/ijsem.0.005387
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error