1887

Abstract

A novel methylotrophic methanogen sp. nov. was isolated from East China Sea sediment. Type strain LMO-1 of sp. nov. was irregular 1–2 µm cocci without flagella. Strain LMO-1 could utilize a variety of methylated compounds including methanol, methylamine, dimethylamine and trimethylamine for growth and methanogenesis, while H/CO or acetate could not be used for growth or methanogenesis. Optimum growth temperature was 30–35 °C, optimum pH range for growth was 7.0–7.5, while the optimum salinity spectrum for growth was 1.0%–5.0% NaCl. Based on 16S rRNA gene similarity, strain LMO-1 belongs to , with the highest sequence similarity to DSM 2657 (99.8 %), SLH33(99.4 %), followed by AK-5(98.1 %), DSM 6242 (98.0 %). Digital DNA–DNA hybridization also showed highest similarity with DSM 2657, with the value of 58.4 %. The average nucleotide identity between strain LMO-1 and DSM 2657 was 94.06 %. In summary, LMO-1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LMO-1 (=MCCC 4K00106=JCM 39195).

Funding
This study was supported by the:
  • Natural Science Foundation of China (Award 41921006)
    • Principle Award Recipient: FengpingWang
  • COMRA project (Award DY135-B2-12)
    • Principle Award Recipient: FengpingWang
  • National Key Research and Development Project of China (Award 2018YFC0310803)
    • Principle Award Recipient: FengpingWang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005384
2022-05-18
2024-05-10
Loading full text...

Full text loading...

References

  1. Garrity G, Boone DR, Castenholz RW. Bergey’s Manual of Systematic Bacteriology: Volume One: The Archaea and the Deeply Branching and Phototrophic Bacteria: Springer New York; 2001
    [Google Scholar]
  2. Garrity GM, Bell JA, Lilburn TG. Taxonomic outline of the prokaryotes. Bergey’s Manual of Systematic Bacteriology 2004
    [Google Scholar]
  3. L’Haridon S, Toffin L, Roussel E, Whitman WB. Methanococcoides. In Bergey’s Manual of Systematics of Archaea and Bacteria 2020 pp 1–9
    [Google Scholar]
  4. Sowers KR, Ferry JG. Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl Environ Microbiol 1983; 45:684–690 [View Article] [PubMed]
    [Google Scholar]
  5. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  6. Franzmann PD, Springer N, Ludwig W, Conway De Macario E, Rohde M. A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 1992; 15:573–581 [View Article]
    [Google Scholar]
  7. Singh N, Kendall MM, Liu Y, Boone DR. Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica . Int J Syst Evol Microbiol 2005; 55:2531–2538 [View Article] [PubMed]
    [Google Scholar]
  8. L’Haridon S, Chalopin M, Colombo D, Toffin L. Methanococcoides vulcani sp. nov., a marine methylotrophic methanogen that uses betaine, choline and N,N-dimethylethanolamine for methanogenesis, isolated from a mud volcano, and emended description of the genus Methanococcoides . Int J Syst Evol Microbiol 2014; 64:1978–1983 [View Article] [PubMed]
    [Google Scholar]
  9. Watkins AJ, Roussel EG, Webster G, Parkes RJ, Sass H. Choline and N,N-dimethylethanolamine as direct substrates for methanogens. Appl Environ Microbiol 2012; 78:8298–8303 [View Article] [PubMed]
    [Google Scholar]
  10. Ticak T, Hariraju D, Arcelay MB, Arivett BA, Fiester SE et al. Isolation and characterization of a tetramethylammonium-degrading Methanococcoides strain and a novel glycine betaine-utilizing Methanolobus strain. Arch Microbiol 2015; 197:197–209 [View Article] [PubMed]
    [Google Scholar]
  11. Watkins AJ, Roussel EG, Parkes RJ, Sass H. Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.). Appl Environ Microbiol 2014; 80:289–293 [View Article] [PubMed]
    [Google Scholar]
  12. Xu L, Zhuang GC, Montgomery A, Liang Q, Joye SB et al. Methyl-compounds driven benthic carbon cycling in the sulfate-reducing sediments of South China Sea. Environ Microbiol 2021; 23:641–651 [View Article] [PubMed]
    [Google Scholar]
  13. Zhuang G, Xu L, Liang Q, Fan X, Xia Z et al. Biogeochemistry, microbial activity, and diversity in surface and subsurface deep‐sea sediments of South China Sea. Limnol Oceanogr 2019; 64:2252–2270 [View Article]
    [Google Scholar]
  14. Widdel F, Bak F. Gram-negative mesophilic sulfate-reducing bacteria. InThe prokaryotes New York, NY: Springer; 1992 pp 3352–3378
    [Google Scholar]
  15. Liang L, Wang Y, Sivan O, Wang F. Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems. Sci China Life Sci 2019; 62:1287–1295 [View Article] [PubMed]
    [Google Scholar]
  16. Vigderovich H, Liang L, Herut B, Wang F, Wurgaft E et al. Evidence for microbial iron reduction in the methanic sediments of the oligotrophic southeastern Mediterranean continental shelf. Biogeosciences 2019; 16:3165–3181 [View Article]
    [Google Scholar]
  17. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  18. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  19. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  20. Hu J, Fan J, Sun Z, Liu S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 2020; 36:2253–2255 [View Article] [PubMed]
    [Google Scholar]
  21. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:1–19 [View Article] [PubMed]
    [Google Scholar]
  25. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  26. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  27. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article] [PubMed]
    [Google Scholar]
  28. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [View Article]
    [Google Scholar]
  29. Guan Y, Ngugi DK, Blom J, Ali S, Ferry JG et al. Draft genome sequence of an obligately methylotrophic methanogen, Methanococcoides methylutens, isolated from marine sediment. Genome Announc 2014; 2:e01184-14 [View Article] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:1–10 [View Article] [PubMed]
    [Google Scholar]
  31. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  32. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  33. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017; 33:2946–2947 [View Article] [PubMed]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  35. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  36. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:1–6 [View Article] [PubMed]
    [Google Scholar]
  37. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  38. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020; 36:2251–2252 [View Article] [PubMed]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  40. Webster G, Mullins AJ, Watkins AJ, Cunningham-Oakes E, Weightman AJ et al. Genome sequences of two choline-utilizing methanogenic archaea, Methanococcoides spp., isolated from marine sediments. Microbiol Resour Announc 2019; 8:18 [View Article] [PubMed]
    [Google Scholar]
  41. Lyimo TJ, Pol A, Jetten MSM, den Camp HJMO. Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain. FEMS Microbiol Lett 2009; 291:247–253 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005384
Loading
/content/journal/ijsem/10.1099/ijsem.0.005384
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error