1887

Abstract

The taxonomic positions of two novel strains isolated from larvae of an insect () collected in Jeju, Republic of Korea, were determined by a polyphasic approach. Strain BWB3-3 was closely related to the type strain of , having 97.2 % 16S rRNA gene sequence similarity, whereas strain BWM-S5 formed an independent cluster within the genus in the 16S rRNA gene phylogeny and the closest relative was the type strain of (98.1 % sequence similarity). The core gene analysis supported the phylogenetic positions of the isolates revealed by 16S rRNA gene phylogeny. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain BWB3-3 and the type strain of were 73.2 and 20.0 %, respectively, whereas strain BWM-S5 showed an ANI value of 70.9 % with the type strain of . The dDDH values between strain BWM-S5 and all the type strains of species were ≤25.1 %. On the basis of the results obtained here, the two isolates are considered to constitute two novel species of the family , for which the names sp. nov. and sp. nov. are proposed, with the type strains BWB3-3 (=KCTC 43277=CCM 9080) and BWM-S5 (=KACC 22156=CCM 9075), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005382
2022-05-18
2024-04-27
Loading full text...

Full text loading...

References

  1. Collins MD, Ash C, Farrow JA, Wallbanks S, Williams AM. 16S ribosomal ribonucleic acid sequence analyses of lactococci and related taxa. Description of Vagococcus fluvialis gen. nov., sp. nov. J Appl Bacteriol 1989; 67:453–460 [View Article]
    [Google Scholar]
  2. Schleifer KH, Kilpper-Balz R. Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Bacteriol 1984; 34:31–34 [View Article]
    [Google Scholar]
  3. Ludwig W, Schleifer K-H, Whitman WB. Family IV. Enterococcaceae fam. nov. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. New York: Springer; 2009 p 594
    [Google Scholar]
  4. Franz C, Holzapfel WH. The genus Enterococcus: biotechnological and safety issues. In Salminen S, Ouwehand A. eds Lactic Acid Bacteria: Microbiological and Functional Aspects, 3rd edn. New York: Marcel Dekker Inc; 2004 pp 199–247
    [Google Scholar]
  5. Lawson PA, Foster G, Falsen E, Ohlén M, Collins MD. Vagococcus lutrae sp. nov., isolated from the common otter (Lutra lutra). Int J Syst Bacteriol 1999; 49 Pt 3:1251–1254 [View Article] [PubMed]
    [Google Scholar]
  6. Tak EJ, Kim HS, Lee J-Y, Kang W, Hyun D-W et al. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula. Int J Syst Evol Microbiol 2017; 67:3398–3402 [View Article] [PubMed]
    [Google Scholar]
  7. Ge Y, Yang J, Lai X-H, Zhang G, Jin D et al. Vagococcus xieshaowenii sp. nov., isolated from snow finch (Montifringilla taczanowskii) cloacal content. Int J Syst Evol Microbiol 2020; 70:2493–2498 [View Article] [PubMed]
    [Google Scholar]
  8. Wallbanks S, Martinez-Murcia AJ, Fryer JL, Phillips BA, Collins MD. 16S rRNA sequence determination for members of the genus Carnobacterium and related lactic acid bacteria and description of Vagococcus salmoninarum sp. nov. Int J Syst Bacteriol 1990; 40:224–230 [View Article] [PubMed]
    [Google Scholar]
  9. Švec P, Devriese LA. Genus I. Enterococcus. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. New York: Springer; 2009 pp 594–606
    [Google Scholar]
  10. Shewmaker PL, Steigerwalt AG, Morey RE, Carvalho M da GS, Elliott JA et al. Vagococcus carniphilus sp. nov., isolated from ground beef. Int J Syst Evol Microbiol 2004; 54:1505–1510 [View Article] [PubMed]
    [Google Scholar]
  11. Sundararaman A, Srinivasan S, Lee SS. Vagococcus humatus sp. nov., isolated from soil beneath a decomposing pig carcass. Int J Syst Evol Microbiol 2017; 67:330–335 [View Article] [PubMed]
    [Google Scholar]
  12. Tyrrell GJ, Turnbull L, Teixeira LM, Lefebvre J, Carvalho M da GS et al. Enterococcus gilvus sp. nov. and Enterococcus pallens sp. nov. isolated from human clinical specimens. J Clin Microbiol 2002; 40:1140–1145 [View Article]
    [Google Scholar]
  13. Kusuda R, Kawai K, Salati F, Banner CR, Fryer JL. Enterococcus seriolicida sp. nov., a fish pathogen. Int J Syst Bacteriol 1991; 41:406–409 [View Article] [PubMed]
    [Google Scholar]
  14. Killer J, Švec P, Sedláček I, Černohlávková J, Benada O et al. Vagococcus entomophilus sp. nov., from the digestive tract of a wasp (Vespula vulgaris). Int J Syst Evol Microbiol 2014; 64:731–737 [View Article] [PubMed]
    [Google Scholar]
  15. Sedláček I, Holochová P, Mašlaňová I, Kosina M, Spröer C et al. Enterococcus ureilyticus sp. nov. and Enterococcus rotai sp. nov., two urease-producing enterococci from the environment. Int J Syst Evol Microbiol 2013; 63:502–510 [View Article] [PubMed]
    [Google Scholar]
  16. Švec P, Vancanneyt M, Sedláček I, Naser SM, Snauwaert C et al. Enterococcus silesiacus sp. nov. and Enterococcus termitis sp. nov. Int J Syst Evol Microbiol 2006; 56:577–581 [View Article]
    [Google Scholar]
  17. Lee SD, Byeon YS, Kim SM, Yang HL, Kim IS. Jinshanibacter allomyrinae sp. nov., isolated from larvae of Allomyrina dichotoma, proposal of Insectihabitans xujianqingii gen. nov., comb. nov. and emended descriptions of the genera Jinshanibacter, Limnobaculum and Pragia. Int J Syst Evol Microbiol 2021; 71:004938 [View Article] [PubMed]
    [Google Scholar]
  18. MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria, 2nd edn. Baltimore: Williams & Wilkins; 1980
    [Google Scholar]
  19. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  20. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  21. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985; 18:329–366
    [Google Scholar]
  22. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. eds Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 173–199
    [Google Scholar]
  23. Lee SD, Kim YJ, Kim IS. Rhodococcus subtropicus sp. nov., a new actinobacterium isolated from a cave. Int J Syst Evol Microbiol 2019; 69:3128–3134 [View Article]
    [Google Scholar]
  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  26. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  28. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. eds Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  30. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  31. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  32. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  33. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article] [PubMed]
    [Google Scholar]
  34. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  35. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  36. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  37. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  40. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  41. De Graef EM, Devriese LA, Vancanneyt M, Baele M, Collins MD et al. Description of Enterococcus canis sp. nov. from dogs and reclassification of Enterococcus porcinus Teixeira et al. 2001 as a junior synonym of Enterococcus villorum Vancanneyt et al 2001. Int J Syst Evol Microbiol 2003; 53:1069–1074 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005382
Loading
/content/journal/ijsem/10.1099/ijsem.0.005382
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error