1887

Abstract

A novel obligate anaerobic organism, designated DONG20-135, was isolated from human faeces collected in Beijing, PR China. Cells were Gram-stain-negative, rod-shaped, non-motile and non-spore-forming. Growth occurred at 25‒45 °C (optimum, 30‒35 °C), a pH range of 6–9 (optimum, pH 8) and in the presence of 0‒3.5 % (w/v) NaCl (optimum, 0.5‒1.5 %). The major fatty acids were C, C 9 and C, the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, four glycolipids, six aminolipids, three aminophospholipids and four unidentified lipids. No respiratory quinones were detected. The cell-wall peptidoglycan of the strain was A1 type, containing -diaminopimelic acid. The 16S rRNA gene sequences shared a lower identity (<92.7 % similarity) with the described species. The phylogenetic tree based on 16S rRNA gene sequences and the protein-concatamer tree showed that strain DONG20-135 formed a distinct lineage within the family . The genomic DNA G + C content was 42.2 mol%. Based on the results of phenotypic, chemotaxonomic and genomic analyses, strain DONG20-135 represents a novel genus of the family , for which the name gen. nov., sp. nov. is proposed (=KCTC 15868=CGMCC 1.17357).

Funding
This study was supported by the:
  • the National Science and Technology Fundamental Resources Investigation Program of China (Award 2021FY100900)
    • Principle Award Recipient: Ping-HuaQu
  • the National Natural Science Foundation of China (Award 31970863)
    • Principle Award Recipient: Yu-JingBi
  • the National Natural Science Foundation for Key Programs of China (Award 81790632)
    • Principle Award Recipient: Yu-JingBi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005373
2022-05-13
2024-05-03
Loading full text...

Full text loading...

References

  1. Verbarg S, Rheims H, Emus S, Frühling A, Kroppenstedt RM et al. Erysipelothrix inopinata sp. nov., isolated in the course of sterile filtration of vegetable peptone broth, and description of Erysipelotrichaceae fam. nov. Int J Syst Evol Microbiol 2004; 54:221–225 [View Article] [PubMed]
    [Google Scholar]
  2. Greetham HL, Gibson GR, Giffard C, Hippe H, Merkhoffer B et al. Allobaculum stercoricanis gen. nov., sp. nov., isolated from canine feces. Anaerobe 2004; 10:301–307 [View Article]
    [Google Scholar]
  3. Paek J, Shin Y, Kim J-S, Kim H, Kook J-K et al. Description of Absiella argi gen. nov., sp. nov., and transfer of Eubacterium dolichum and Eubacterium tortuosum to the genus Absiella as Absiella dolichum comb. nov. and Absiella tortuosum comb. nov. Anaerobe 2017; 48:70–75 [View Article]
    [Google Scholar]
  4. Shin Y, Paek J, Kim H, Kook J-K, Kim J-S et al. Absicoccus porci gen. nov., sp. nov., a member of the family Erysipelotrichaceae isolated from pig faeces. Int J Syst Evol Microbiol 2020; 70:732–737 [View Article]
    [Google Scholar]
  5. Kim JS, Choe H, Lee YR, Kim KM, Park DS. Intestinibaculum porci gen. nov., sp. nov., a new member of the family Erysipelotrichaceae isolated from the small intestine of a swine. J Microbiol 2019; 57:381–387 [View Article]
    [Google Scholar]
  6. Wylensek D, Hitch TCA, Riedel T, Afrizal A, Kumar N et al. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat Commun 2020; 11:6389 [View Article] [PubMed]
    [Google Scholar]
  7. Cox LM, Sohn J, Tyrrell KL, Citron DM, Lawson PA et al. Description of two novel members of the family Erysipelotrichaceae: Ileibacterium valens gen. nov., sp. nov. and Dubosiella newyorkensis, gen. nov., sp. nov., from the murine intestine, and emendation to the description of Faecalibaculum rodentium. Int J Syst Evol Microbiol 2017; 67:1247–1254 [View Article]
    [Google Scholar]
  8. Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 2016; 1:16131 [View Article] [PubMed]
    [Google Scholar]
  9. Chang DH. Faecalibaculum rodentium gen. nov., sp. nov., isolated from the faeces of a laboratory mouse. Antonie van leeuwenhoek 2015;108:1309‒1318. erratum in. Antonie van Leeuwenhoek 2016; 109:481 [View Article]
    [Google Scholar]
  10. De Maesschalck C, Van Immerseel F, Eeckhaut V, De Baere S, Cnockaert M et al. Faecalicoccus acidiformans gen. nov., sp. nov., isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov. and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae. Int J Syst Evol Microbiol 2014; 64:3877–3884 [View Article]
    [Google Scholar]
  11. Ikeyama N, Toyoda A, Morohoshi S, Kunihiro T, Murakami T et al. Amedibacterium intestinale gen. nov., sp. nov., isolated from human faeces, and reclassification of Eubacterium dolichum Moore et al. 1976 (Approved Lists 1980) as Amedibacillus dolichus gen. nov., comb. nov. Int J Syst Evol Microbiol 2020; 70:3656–3664 [View Article]
    [Google Scholar]
  12. Ramasamy D, Lagier JC, Nguyen TT, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Dielma fastidiosa gen. nov., sp. nov., a new member of the family Erysipelotrichaceae. Stand Genomic Sci 2013; 8:336–351 [View Article]
    [Google Scholar]
  13. Kageyama A, Benno Y. Phylogenic and phenotypic characterization of some Eubacterium-like isolates from human feces: description of Solobacterium moorei gen. nov., sp. nov. Microbiol Immunol 2000; 44:223–227 [View Article] [PubMed]
    [Google Scholar]
  14. Seo B, Jeon K, Baek I, Lee YM, Baek K et al. Faecalibacillus intestinalis gen. nov., sp. nov. and Faecalibacillus faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2019; 69:2120–2128 [View Article]
    [Google Scholar]
  15. Kaakoush NO. Insights into the role of Erysipelotrichaceae in the human host. Front Cell Infect Microbiol 2015; 5:84 [View Article] [PubMed]
    [Google Scholar]
  16. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164:337–340 [View Article] [PubMed]
    [Google Scholar]
  17. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol 2016; 7:979 [View Article]
    [Google Scholar]
  18. Zhang M, Sun K, Wu Y, Yang Y, Tso P et al. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front Immunol 2017; 8:942 [View Article] [PubMed]
    [Google Scholar]
  19. Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ. Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. J Neurogastroenterol Motil 2016; 22:201–212 [View Article] [PubMed]
    [Google Scholar]
  20. Liu R, Hong J, Xu X, Feng Q, Zhang D et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 2017; 23:859–868 [View Article] [PubMed]
    [Google Scholar]
  21. Liu H, Hu C, Zhang X, Jia W. Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes. J Diabetes Investig 2018; 9:13–20 [View Article] [PubMed]
    [Google Scholar]
  22. Li Z, Wu Z, Yan J, Liu H, Liu Q et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Lab Invest 2019; 99:346–357 [View Article] [PubMed]
    [Google Scholar]
  23. Chang Y, Hou F, Pan Z, Huang Z, Han N et al. Optimization of culturomics strategy in human fecal samples. Front Microbiol 2019; 10:2891 [View Article] [PubMed]
    [Google Scholar]
  24. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  25. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acids Techniques in Bacterial Systematics Chichester: John Wiley & Sons; 1991 pp 115–147
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  27. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  31. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  33. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  34. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  35. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28:1033–1034 [View Article] [PubMed]
    [Google Scholar]
  36. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  37. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  40. Arahal DR. Whole-Genome Analyses: Average Nucleotide Identity. Methods in Microbiology San Diego: Elsevier; 2014 pp 103–122
    [Google Scholar]
  41. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  42. Li X, Huang Y, Whitman WB. The relationship of the whole genome sequence identity to DNA hybridization varies between genera of prokaryotes. Antonie van Leeuwenhoek 2015; 107:241–249 [View Article] [PubMed]
    [Google Scholar]
  43. Logan NA, Vos PD et al. The genus Bacillus. In Vos PD, Garrity GM, Jones D, Krieg ND, Ludwig W. eds Bergey’s Manual of Systematic Bacteriology, Vol. 3, The Firmicutes, 2nd edn. New York: Springer; 2009 p 62
    [Google Scholar]
  44. Aslanzadeh J. Biochemical profile-based microbial identification systems. In Tang YW, Stratton CW. eds Advanced Techniques in Diagnostic Microbiology New York: Springer; 2006 p 87
    [Google Scholar]
  45. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  46. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 2006; 5:2359–2367 [View Article]
    [Google Scholar]
  47. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 2002; 77:4844–4846 [View Article]
    [Google Scholar]
  48. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  49. Moore WEC, Johnson JL, Holdeman LV. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int J Syst Bacteriol 1976; 26:238–252 [View Article]
    [Google Scholar]
  50. Smith LD, King E. Clostridium innocuum, sp. n., a sporeforming anaerobe isolated from human infections. J Bacteriol 1962; 83:938–939 [View Article] [PubMed]
    [Google Scholar]
  51. Logan NA, Vos PD et al. The genus Eubacterium. In Vos PD, Garrity GM, Jones D, Krieg ND, Ludwig W. eds Bergey’s Manual of Systematic Bacteriology, Vol. 3, The Firmicutes, 2nd edn. New York: Springer; 2009 p 889
    [Google Scholar]
  52. Wade WG. The genus Eubacterium and related genera. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. eds The Prokaryotes, Vol. 4, Bacteria: Firmicutes, Cyanobacteria, 3rd edn. New York: Springer; 2006 pp 823–1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005373
Loading
/content/journal/ijsem/10.1099/ijsem.0.005373
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error