1887

Abstract

Gram-stain-negative, strictly aerobic, red-pink-coloured, rod-shaped and non-motile bacterial strains PAMC 29290, PAMC 29294 and PAMC 29296 were isolated from marine surface sediment sampled in the East Siberian Sea and strains PAMC 26553 and PAMC 26554 were obtained from an Antarctic lichen. Strains PAMC 29290, PAMC 29294 and PAMC 29296 were closely related to (98.8 % 16S rRNA gene similarity), (97.3 %) and (96.9 %), and PAMC 26553 and PAMC 26554 showed high similarity to (97.0 %), (96.1 %) and (95.9 %). Genomic relatedness analyses showed that strains PAMC 29290, PAMC 29294 and PAMC 29296 could be distinguished from by average nucleotide identity (ANI; 93.1–93.2 %) and digital DNA–DNA hybridization (dDDH; 50.3–51.0 %) values. Strains PAMC 26553 and PAMC 26554 could be clearly distinguished from with ANI values <79.8 % and dDDH values <23.3 %. The major fatty acids of strains PAMC 29290, PAMC 29294 and PAMC 29296 were C iso (21.0–26.0 %), summed feature 3 (C ω7 and/or C ω6; 17.4–18.2 %), C anteiso (12.7–19.1 %) and summed feature 4 (C iso I and/or anteiso B; 8.6–16.1 %) and those of strains PAMC 26553 and PAMC 26554 were summed feature 3 (C ω7 and/or C ω6; 20.7–22.2 %), C anteiso (17.5–19.7 %) and summed feature 4 (C iso I and/or anteiso B; 15.5–18.1 %). The major respiratory quinone was MK-7. The genomic DNA G+C contents were 60.6–60.8 mol%. The polar lipids of PAMC 29294 were found to consist of phosphatidylethanolamine, four unidentified aminolipids, an unidentified aminophospholipid and five unidentified lipids; those of PAMC 26554 were phosphatidylethanolamine, three unidentified aminolipids, four unidentified aminophospholipid and two unidentified lipids. The distinct phylogenetic position and some physiological characteristics distinguished the novel strains from closely related type strains in the genus . Thus, two novel species are proposed, with the names sp. nov. (type strain, PAMC 29294=KCTC 82466=JCM 34574) and sp. nov. (type strain, PAMC 26554=KCTC 82464=JCM 34572), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005290
2022-03-29
2024-04-26
Loading full text...

Full text loading...

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21:374–383 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  3. Roldán DM, Kyrpides N, Woyke T, Shapiro N, Whitman WB et al. Hymenobacter artigasi sp. nov., isolated from air sampling in maritime Antarctica. Int J Syst Evol Microbiol 2020; 70:4935–4941 [View Article] [PubMed]
    [Google Scholar]
  4. Gu Z, Liu Y, Xu B, Wang N, Jiao N et al. Hymenobacter frigidus sp. nov., isolated from a glacier ice core. Int J Syst Evol Microbiol 2017; 67:4121–4125 [View Article] [PubMed]
    [Google Scholar]
  5. Chhetri G, Kim J, Kim I, Kim H, Seo T. Hymenobacter setariae sp. nov., isolated from the ubiquitous weedy grass Setaria viridis. Int J Syst Evol Microbiol 2020; 70:3724–3730 [View Article] [PubMed]
    [Google Scholar]
  6. Subhash Y, Sasikala C, Ramana CV. Hymenobacter roseus sp. nov., isolated from sand. Int J Syst Evol Microbiol 2014; 64:4129–4133 [View Article] [PubMed]
    [Google Scholar]
  7. Lee J-J, Park S-J, Lee Y-H, Lee S-Y, Ten LN et al. Hymenobacter aquaticus sp. nov., a radiation-resistant bacterium isolated from a river. Int J Syst Evol Microbiol 2017; 67:1206–1211 [View Article] [PubMed]
    [Google Scholar]
  8. Srinivasan S, Joo ES, Lee J-J, Kim MK. Hymenobacter humi sp. nov., a bacterium isolated from soil. Antonie van Leeuwenhoek 2015; 107:1411–1419 [View Article] [PubMed]
    [Google Scholar]
  9. Sedláček I, Králová S, Kýrová K, Mašlaňová I, Busse H-J et al. Red-pink pigmented Hymenobacter coccineus sp. nov., Hymenobacter lapidarius sp. nov. and Hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int J Syst Evol Microbiol 2017; 67:1975–1983 [View Article]
    [Google Scholar]
  10. Hoang V-A, Kim Y-J, Nguyen NL, Yang D-C. Hymenobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2013; 63:661–666 [View Article] [PubMed]
    [Google Scholar]
  11. Kojima H, Watanabe M, Tokizawa R, Shinohara A, Fukui M. Hymenobacter nivis sp. nov., isolated from red snow in Antarctica. Int J Syst Evol Microbiol 2016; 66:4821–4825 [View Article] [PubMed]
    [Google Scholar]
  12. Zhang D-C, Busse H-J, Liu H-C, Zhou Y-G, Schinner F et al. Hymenobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2011; 61:859–863 [View Article] [PubMed]
    [Google Scholar]
  13. Lee J-J, Kang M-S, Joo ES, Jung H-Y, Kim MK. Hymenobacter sedentarius sp. nov., isolated from a soil. J Microbiol 2016; 54:283–289 [View Article] [PubMed]
    [Google Scholar]
  14. Dai J, Wang Y, Zhang L, Tang Y, Luo X et al. Hymenobacter tibetensis sp. nov., a UV-resistant bacterium isolated from Qinghai-Tibet plateau. Syst Appl Microbiol 2009; 32:543–548 [View Article] [PubMed]
    [Google Scholar]
  15. Zhang G, Niu F, Busse H-J, Ma X, Liu W et al. Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai--Tibet Plateau permafrost region. Int J Syst Evol Microbiol 2008; 58:1215–1220 [View Article] [PubMed]
    [Google Scholar]
  16. Klassen JL, Foght JM. Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 2011; 15:45–57 [View Article] [PubMed]
    [Google Scholar]
  17. Sedláček I, Pantůček R, Zeman M, Holochová P, Šedo O et al. Hymenobacter terrestris sp. nov. and Hymenobacter lapidiphilus sp. nov., isolated from regoliths in Antarctica. Int J Syst Evol Microbiol 2020; 70:6364–6372 [View Article] [PubMed]
    [Google Scholar]
  18. Sedláček I, Pantůček R, Holochová P, Králová S, Staňková E et al. Hymenobacter humicola sp. nov., isolated from soils in Antarctica. Int J Syst Evol Microbiol 2019; 69:2755–2761 [View Article] [PubMed]
    [Google Scholar]
  19. Sedláček I, Pantůček R, Králová S, Mašlaňová I, Holochová P et al. Hymenobacter amundsenii sp. nov. resistant to ultraviolet radiation, isolated from regoliths in Antarctica. Syst Appl Microbiol 2019; 42:284–290 [View Article] [PubMed]
    [Google Scholar]
  20. Dahal RH, Chaudhary DK, Kim D-U, Kim J. Hymenobacter polaris sp. nov., a psychrotolerant bacterium isolated from an Arctic station. Int J Syst Evol Microbiol 2020; 70:4890–4896 [View Article] [PubMed]
    [Google Scholar]
  21. Jiang F, Danzeng W, Zhang Y, Zhang Y, Jiang L et al. Hymenobacter rubripertinctus sp. nov., isolated from Antarctic tundra soil. Int J Syst Evol Microbiol 2018; 68:663–668 [View Article] [PubMed]
    [Google Scholar]
  22. Maeng S, Kim MK, Subramani G. Hymenobacter jejuensis sp. nov., a UV radiation-tolerant bacterium isolated from Jeju Island. Antonie van Leeuwenhoek 2020; 113:553–561 [View Article] [PubMed]
    [Google Scholar]
  23. Collins MD, Hutson RA, Grant IR, Patterson MF. Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 2000; 50:731–734 [View Article] [PubMed]
    [Google Scholar]
  24. Lee YM, Kim EH, Lee HK, Hong SG. Biodiversity and physiological characteristics of Antarctic and Arctic lichens-associated bacteria. World J Microbiol Biotechnol 2014; 30:2711–2721 [View Article] [PubMed]
    [Google Scholar]
  25. Park CH, Hong SG, Elvebakk A. Psoroma antarcticum, a new lichen species from Antarctica and neighbouring areas. Polar Biol 2018; 41:1083–1090 [View Article]
    [Google Scholar]
  26. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991
    [Google Scholar]
  27. Lane 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics 1991 New York, NY: John Wiley and Sons;115–175
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  29. Jeon Y-S, Chung H, Park S, Hur I, Lee J-H et al. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 2005; 21:3171–3173 [View Article] [PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  31. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Biology 1971; 20:406–416 [View Article]
    [Google Scholar]
  32. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  34. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  35. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  36. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  37. Moriya Y, Itoh M, Okuda S, Kanehisa M. KAAS: KEGG automatic annotation server. Genome Inform 2005; 5:2005
    [Google Scholar]
  38. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  39. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  40. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26:2460–2461 [View Article] [PubMed]
    [Google Scholar]
  41. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  42. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  43. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  44. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001; 25:39–67 [View Article] [PubMed]
    [Google Scholar]
  45. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  46. Lee YM, Kim G, Jung Y-J, Choe C-D, Yim JH et al. Polar and Alpine Microbial Collection (PAMC): a culture collection dedicated to polar and alpine microorganisms. Polar Biol 2012; 35:1433–1438 [View Article]
    [Google Scholar]
  47. Gordon RE, Barnett DA, Handerhan JE, Pang C-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  48. Smibert R, Krieg KR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology American Society for Microbiology; 1994
    [Google Scholar]
  49. Kersters K, De Vos P, Gillis M, Swings J, Vandamme P et al. Introduction to the proteobacteria. The Prokaryotes 2006; 5:3–37
    [Google Scholar]
  50. Sasser M. Bacterial Identification by Gas Chromatographic Analysis of Fatty Acids Methyl Esters (GC-FAME) Newark, NY: Microbial ID; 2006
    [Google Scholar]
  51. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
  52. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol 1984; 2:233–241 [View Article]
    [Google Scholar]
  53. Sheu S-Y, Hsieh T-Y, Kwon S-W, Chen W-M. Hymenobacter rivuli sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 2018; 68:1220–1226 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005290
Loading
/content/journal/ijsem/10.1099/ijsem.0.005290
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error