1887

Abstract

A Gram-stain-negative, aerobic and motile bacterial strain, designated CJ34, was isolated from Han River water in the Republic of Korea. Strain CJ34 grew optimally on tryptic soy agar at 30 °C and pH 7.0 in the absence of NaCl. Results of phylogenetic analysis based on 16S rRNA gene sequence showed that strain CJ34 belonged to the genus within the family and was most closely related to ATCC 11996 and DSM 17888 (both 98.63 % similarity). The average nucleotide identity values between strain CJ34 and two closely related type strains ATCC 11996 and DSM 17888 were 82.77 and 82.73 %, respectively. The major isoprenoid quinone of strain CJ34 was ubiquinone Q-8. The major cellular fatty acids of strain CJ34 were C, C 6 and/or C 7c and C 6 and/or C 7. The predominant polar lipids of strain CJ34 were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospholipid. Whole genome sequencing revealed that strain CJ34 had a genome of 4.9 Mbp and the G+C content of the genomic DNA was 59.73 mol%. On the basis of the results of this polyphasic taxonomy study, strain CJ34 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is CJ34 (=KACC 22237=JCM 34454).

Funding
This study was supported by the:
  • Chung-Ang University
    • Principle Award Recipient: Eun-HeePark
  • Ministry of Environment (Award 2016001350004)
    • Principle Award Recipient: Chang-JunCha
  • National Institute of Biological Resources (Award NIBR201902203)
    • Principle Award Recipient: Chang-JunCha
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005287
2022-03-22
2024-05-01
Loading full text...

Full text loading...

References

  1. De Vos P, Kersters K, Falsen E, Pot B, Gillis M et al. Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int J Syst Evol Microbiol 1985; 35:443–453 [View Article]
    [Google Scholar]
  2. Wu Y, Zaiden N, Cao B. The core- and pan-genomic analyses of the genus Comamonas: from environmental adaptation to potential virulence. Front Microbiol 2018; 9:3096 [View Article] [PubMed]
    [Google Scholar]
  3. Park K-H, Yu Z, Dong K, Lee S-S. Comamonas suwonensis sp. nov., isolated from stream water in the Republic of Korea. Int J Syst Evol Microbiol 2021; 71:004681 [View Article] [PubMed]
    [Google Scholar]
  4. Hugh R. Comamonas terrigena comb. nov. with proposal of a neotype and request for an opinion. Int Bull Bacteriol Nomenclat Taxon 1962; 12:33–36 [View Article]
    [Google Scholar]
  5. Tamaoka J, Ha DM, Komagata K. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. Int J Syst Evol Microbiol 1987; 37:52–59 [View Article]
    [Google Scholar]
  6. Yu X-Y, Li Y-F, Zheng J-W, Li Y, Li L et al. Comamonas zonglianii sp. nov., isolated from phenol-contaminated soil. Int J Syst Evol Microbiol 2011; 61:255–258 [View Article] [PubMed]
    [Google Scholar]
  7. Chipirom K, Tanasupawat S, Akaracharanya A, Leepepatpiboon N, Prange A et al. Comamonas terrae sp. nov., an arsenite-oxidizing bacterium isolated from agricultural soil in Thailand. J Gen Appl Microbiol 2012; 58:245–251 [View Article] [PubMed]
    [Google Scholar]
  8. Sun L-N, Zhang J, Chen Q, He J, Li Q-F et al. Comamonas jiangduensis sp. nov., a biosurfactant-producing bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2013; 63:2168–2173 [View Article] [PubMed]
    [Google Scholar]
  9. Hatayama K. Comamonas humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:3976–3982 [View Article] [PubMed]
    [Google Scholar]
  10. Gumaelius L, Magnusson G, Pettersson B, Dalhammar G. Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2001; 51:999–1006 [View Article] [PubMed]
    [Google Scholar]
  11. Tago Y, Yokota A. Comamonas badia sp. nov., a floe-forming bacterium isolated from activated sludge. J Gen Appl Microbiol 2004; 50:243–248 [View Article] [PubMed]
    [Google Scholar]
  12. Etchebehere C, Errazquin MI, Dabert P, Moletta R, Muxí L. Comamonas nitrativorans sp. nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate. Int J Syst Evol Microbiol 2001; 51:977–983 [View Article] [PubMed]
    [Google Scholar]
  13. Chang Y-H, Han J, Chun J, Lee KC, Rhee M-S et al. Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int J Syst Evol Microbiol 2002; 52:377–381 [View Article]
    [Google Scholar]
  14. Wauters G, De Baere T, Willems A, Falsen E, Vaneechoutte M. Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena. Int J Syst Evol Microbiol 2003; 53:859–862 [View Article]
    [Google Scholar]
  15. Chou J-H, Sheu S-Y, Lin K-Y, Chen W-M, Arun AB et al. Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. Int J Syst Evol Microbiol 2007; 57:887–891 [View Article] [PubMed]
    [Google Scholar]
  16. Young C-C, Chou J-H, Arun AB, Yen W-S, Sheu S-Y et al. Comamonas composti sp. nov., isolated from food waste compost. Int J Syst Evol Microbiol 2008; 58:251–256 [View Article] [PubMed]
    [Google Scholar]
  17. Kim KH, Ten LN, Liu QM, Im WT, Lee ST. Comamonas granuli sp. nov., isolated from granules used in a wastewater treatment plant. J Microbiol 2008; 46:390–395 [View Article] [PubMed]
    [Google Scholar]
  18. Narayan KD, Pandey SK, Das SK. Characterization of Comamonas thiooxidans sp. nov., and comparison of thiosulfate oxidation with Comamonas testosteroni and Comamonas composti. Curr Microbiol 2010; 61:248–253 [View Article] [PubMed]
    [Google Scholar]
  19. Zhang J, Wang Y, Zhou S, Wu C, He J et al. Comamonas guangdongensis sp. nov., isolated from subterranean forest sediment, and emended description of the genus Comamonas. Int J Syst Evol Microbiol 2013; 63:809–814 [View Article] [PubMed]
    [Google Scholar]
  20. Zhu D, Xie C, Huang Y, Sun J, Zhang W. Description of Comamonas serinivorans sp. nov., isolated from wheat straw compost. Int J Syst Evol Microbiol 2014; 64:4141–4146 [View Article] [PubMed]
    [Google Scholar]
  21. Xie F, Ma H, Quan S, Liu D, Chen G. Comamonas phosphati sp. nov., isolated from a phosphate mine. Int J Syst Evol Microbiol 2016; 66:456–461 [View Article] [PubMed]
    [Google Scholar]
  22. Kang W, Soo Kim P, Hyun D-W, Lee J-Y, Sik Kim H et al. Comamonas piscis sp. nov., isolated from the intestine of a Korean rockfish, Sebastes schlegelii. Int J Syst Evol Microbiol 2016; 66:780–785 [View Article] [PubMed]
    [Google Scholar]
  23. Subhash Y, Bang JJ, You TH, Lee SS. Description of Comamonas sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66:2735–2739 [View Article] [PubMed]
    [Google Scholar]
  24. Kämpfer P, Busse H-J, Baars S, Wilharm G, Glaeser SP. Comamonas aquatilis sp. nov., isolated from a garden pond. Int J Syst Evol Microbiol 2018; 68:1210–1214 [View Article] [PubMed]
    [Google Scholar]
  25. Lee K, Kim D-W, Lee D-H, Kim Y-S, Bu J-H et al. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance. Microbiome 2020; 8:2 [View Article] [PubMed]
    [Google Scholar]
  26. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester New York: John Wiley and Sons, Ltd; 1991 pp 115–175
    [Google Scholar]
  27. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003; 55:541–555 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  29. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  32. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [View Article] [PubMed]
    [Google Scholar]
  33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  34. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. eds Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  36. Espejo RT, Plaza N. Multiple ribosomal RNA operons in bacteria; their concerted evolution and potential consequences on the rate of evolution of their 16S rRNA. Front Microbiol 2018; 9:1232 [View Article] [PubMed]
    [Google Scholar]
  37. Sun DL, Jiang X, Wu QL, Zhou NY. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl Environ Microbiol 2013; 79:5962–5969 [View Article] [PubMed]
    [Google Scholar]
  38. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article] [PubMed]
    [Google Scholar]
  39. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  40. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  41. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  42. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  43. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  44. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  45. Stackebrandt E, Goebel BM. Taxonomic Note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  46. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  47. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  48. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  49. Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: A fast and scalable pangenomics toolbox for clustering diverged orthologues in bacteria. Gigascience 2019; 8:giz119 [View Article] [PubMed]
    [Google Scholar]
  50. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  51. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  52. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  53. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  54. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
  55. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  56. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005287
Loading
/content/journal/ijsem/10.1099/ijsem.0.005287
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error