1887

Abstract

A Gram-stain-positive bacterial strain, designated G127AT, was isolated as soft small white colonies from the hindgut of the cockroach . Examination of the complete 16S rRNA sequence mapped the strain to the genus . The type strain with the highest pairwise similarity was H23-8 (97.3%). The genome of G127AT was sequenced by a combination of Illumina and Nanopore methods and consisted of a single circular DNA molecule with a size of 3.45 Mb. The DNA G+C content was 71.3 mol%. A phylogenomic tree based on conserved single copy housekeeping genes, placed G127AT among the ancestral species of the genus , and only P27 was found to diverge earlier than G127AT. Genome distance metrics average nucleotide identity (ANI) (76–78 %) and digital DNA–DNA hybridization (dDDH) (20.2–21.5 %) of the isolate against available genomes of several type strains of species of the genus indicated that G127AT represented a previously undescribed species of the genus . Morphological, physiological and biochemical characteristics, including lipid profile, cellular fatty acids and peptidoglycan type were in accordance with usual attributes of members of the genus . The novel isolate could be differentiated from the most closely related species by extracellular expression of acid and alkaline phosphatases, trypsin and α-chymotrypsin, and utilization of -arabinose and salicin as sole carbon sources. On the basis of the combined genomic and phenotypic features, isolate G127AT (=DSM 111850=LMG 32099) is considered to represent a novel species of the genus , for which we propose the name sp. nov.

Funding
This study was supported by the:
  • Ministerio de Ciencia, Innovación y Universidades (Award PGC2018-096185-B-I00)
    • Principle Award Recipient: MarthaTrujillo
  • LOEWE Zentrum AdRIA
    • Principle Award Recipient: AndreasVilcinskas
  • Alexander von Humboldt-Stiftung
    • Principle Award Recipient: JuanDavid Guzman
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005283
2022-03-21
2024-04-27
Loading full text...

Full text loading...

References

  1. Gledhill WE, Casida LE. Predominant catalase-negative soil bacteria. III. Agromyces, gen. n., microorganisms intermediary to Actinomyces and Nocardia. Appl Microbiol 1969; 18:340–349 [View Article]
    [Google Scholar]
  2. Zgurskaya HI, Evtushenko LI, Akimov VN, Voyevoda HV, Dobrovolskaya TG et al. Emended description of the gdescription of the genus Agromyces and description of Agromyces cerinus subsp. cerinus sp. nov., subsp. nov., Agromyces cerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov. Int J Syst Bacteriol 1992; 42:635–641 [View Article]
    [Google Scholar]
  3. Park YH, Suzuki K, Yim DG, Lee KC, Kim E et al. Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 1993; 64:307–313 [View Article] [PubMed]
    [Google Scholar]
  4. Evtushenko LI, Ariskina EV, Prisyazhnaya NV, Starodumova IP. Agromyces. In Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P. eds Bergey’s Manual of Systematics of Archaea and Bacteria 2017 pp 1–49
    [Google Scholar]
  5. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  6. Li J, Lu S, Jin D, Yang J, Lai X-H et al. Agromyces badenianii sp. nov., isolated from plateau pika (Ochotona curzoniae). Int J Syst Evol Microbiol 2020; 70:2247–2253 [View Article]
    [Google Scholar]
  7. Park E-J, Kim M-S, Jung M-J, Roh SW, Chang H-W et al. Agromyces atrinae sp. nov., isolated from fermented seafood. Int J Syst Evol Microbiol 2010; 60:1056–1059 [View Article]
    [Google Scholar]
  8. Heo J, Hamada M, Tamura T, Saito S, Lee SD et al. Agromyces protaetiae sp. nov., isolated from gut of larva of Protaetia brevitarsis seulensis. Int J Syst Evol Microbiol 2020; 70:1259–1265 [View Article]
    [Google Scholar]
  9. Xue F, Liu Z-Q, Wan N-W, Zheng Y-G. Purification, gene cloning, and characterization of a novel halohydrin dehalogenase from Agromyces mediolanus ZJB120203. Appl Biochem Biotechnol 2014; 174:352–364 [View Article]
    [Google Scholar]
  10. Yasuhira K, Uedo Y, Takeo M, Kato D, Negoro S. Genetic organization of nylon-oligomer-degrading enzymes from alkalophilic bacterium, Agromyces sp. KY5R. J Biosci Bioeng 2007; 104:521–524 [View Article]
    [Google Scholar]
  11. Corretto E, Antonielli L, Sessitsch A, Compant S, Höfer C et al. Complete genome sequence of the heavy metal resistant bacterium Agromyces aureus AR33T and comparison with related Actinobacteria. Stand in Genomic Sci 2017; 12: [View Article]
    [Google Scholar]
  12. Mitsukawa Y, Hibi M, Matsutani N, Horinouchi N, Takahashi S et al. New nucleoside hydrolase with transribosylation activity from Agromyces sp. MM-1 and its application for enzymatic synthesis of 2’-O-methylribonucleosides. J Biosci Bioeng 2018; 125:38–45 [View Article] [PubMed]
    [Google Scholar]
  13. Guzman J, Sombolestani AS, Poehlein A, Daniel R, Cleenwerck I et al. Entomobacter blattae gen. nov., sp. nov., a new member of the Acetobacteraceae isolated from the gut of the cockroach Gromphadorhina portentosa. Int J Syst Evol Microbiol 2019; 71: [View Article]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  15. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  16. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  17. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  18. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  19. Aberer AJ, Kobert K, Stamatakis A. ExaBayes: massively parallel Bayesian tree inference for the whole-genome era. Mol Biol Evol 2014; 31:2553–2556 [View Article] [PubMed]
    [Google Scholar]
  20. Simonsen M, Mailund T, Pedersen CNS. Rapid neighbour-joining. In Crandall KA, Lagergren J. eds Algorithms in Bioinformatics. WABI 2008. Lecture Notes in Computer Science vol 5251 Berlin, Heidelberg: Springer; 2008
    [Google Scholar]
  21. Hoang DT, Vinh LS, Flouri T, Stamatakis A, von Haeseler A et al. MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Evol Biol 2018; 18:11 [View Article] [PubMed]
    [Google Scholar]
  22. Hamada M, Shibata C, Tamura T, Suzuki K. Agromyces marinus sp. nov., a novel actinobacterium isolated from sea sediment. J Antibiot (Tokyo) 2014; 67:703–706 [View Article] [PubMed]
    [Google Scholar]
  23. Salvà Serra F, Salvà-Serra F, Svensson-Stadler L, Busquets A, Jaén-Luchoro D et al. A protocol for extraction and purification of high-quality and quantity bacterial DNA applicable for genome sequencing: a modified version of the Marmur procedure. Protocol Exchange 2018; 2018:084 [View Article]
    [Google Scholar]
  24. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  25. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  26. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  27. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  28. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016; 59:783–791 [View Article] [PubMed]
    [Google Scholar]
  29. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 2013; 41:e121 [View Article] [PubMed]
    [Google Scholar]
  30. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  31. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article]
    [Google Scholar]
  32. Cheng Y, Bai Y, Huang Y, Yang J, Lu S et al. Agromyces laixinhei sp. nov. isolated from bat feces in China. J Microbiol 2021; 59:467–475 [View Article]
    [Google Scholar]
  33. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  34. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  36. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  37. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  38. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  39. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  40. Vinogradov AA, Suga H. Introduction to thiopeptides: biological activity, biosynthesis, and strategies for functional reprogramming. Cell Chem Biol 2020; 27:1032–1051 [View Article] [PubMed]
    [Google Scholar]
  41. Pascual J, González I, Estévez M, Benito P, Trujillo ME et al. Description of Kibdelosporangium banguiense sp. nov., a novel actinomycete isolated from soil of the forest of Pama, on the plateau of Bangui, Central African Republic. Antonie Van Leeuwenhoek 2016; 109:685–695 [View Article] [PubMed]
    [Google Scholar]
  42. Trujillo ME, Fernández-Molinero C, Velázquez E, Kroppenstedt RM, Schumann P et al. Micromonospora mirobrigensis sp. nov. Int J Syst Evol Microbiol 2005; 55:877–880 [View Article] [PubMed]
    [Google Scholar]
  43. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. Journal of Microbiological Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  44. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  45. Schumann P. 5 - Peptidoglycan Structure. In Rainey F, Oren A. eds Methods in Microbiology Academic Press; 2011 pp 101–129
    [Google Scholar]
  46. Sasaki J, Chijimatsu M, Suzuki K. Taxonomic significance of 2,4-diaminobutyric acid isomers in the cell wall peptidoglycan of actinomycetes and reclassification of Clavibacter toxicus as Rathayibacter toxicus comb. nov. Int J Syst Bacteriol 1998; 48:403–410 [View Article] [PubMed]
    [Google Scholar]
  47. Kaur C, Pinnaka AK, Singh NK, Bala M, Mayilraj S. Agromyces arachidis sp. nov. Isolated from a peanut (Arachis hypogaea) crop field. Int J Microbiol 2013; 2013:831308 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005283
Loading
/content/journal/ijsem/10.1099/ijsem.0.005283
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error