1887

Abstract

Through bacterial plant–endophyte extraction from rhizomes of plant, a Gram-stain-negative, aerobic, catalase- and oxidase-positive gammaproteobacterial strain, referred to as FIT28, was isolated. FIT28 shows vigorous growth on nutrient rich media within the temperature range of 4–35 °C, with optimal growth at 28 °C, a wide pH tolerance from pH 5 to 11, and salt tolerance up to 6 % (w/v) NaCl. Colonies are white-yellow and quickly become mucoid. The results of analysis of the 16S rRNA gene sequence placed the strain within the genus , and multilocus sequence analysis (MLSA) using 16S rRNA, , and concatenated sequences revealed that the closest relatives of FIT28 are OE48.2, '' UCMA 17988, ZA5.3, OHA11, a390, P42, PS14 and Ps 9-14, within the subgroup of the lineage. The genome size of FIT28 is about 6.7 Mb with 59.09 mol% DNA G+C content. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values calculated from the genomic sequences of FIT28, and the closely related OE48.2 are 95.23 and 63.4 %, respectively. Biochemical, metabolic and chemotaxonomic studies further support our proposal that sp. nov., should be considered a novel species of the genus . Hence, the type strain FIT28 (=LMG 32353=DSM 112698) has been deposited in public cell-type culture centres.

Funding
This study was supported by the:
  • Ministerio de Ciencia, Innovación y Universidades (Award RTC-2017-6431)
    • Principle Award Recipient: AlbertFerrer
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005268
2022-03-21
2024-05-01
Loading full text...

Full text loading...

References

  1. Atanasov KE, Miñana-Galbis D, Gallego J, Serpico A, Bosch M. Pseudomonas germanica sp. nov., isolated from Iris germanicarhizomes. Figshare 2022. 10.6084/m9.figshare.17000242.v2
    [Google Scholar]
  2. Peix A, Ramírez-Bahena MH, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: An update. Infect Genet Evol 2018; 57:106–116 [View Article] [PubMed]
    [Google Scholar]
  3. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  4. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015; 6:214 [View Article] [PubMed]
    [Google Scholar]
  5. Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R et al. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One 2016; 11:e0150183 [View Article] [PubMed]
    [Google Scholar]
  6. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol 2018; 20:2142–2159 [View Article] [PubMed]
    [Google Scholar]
  7. Franco-Duarte R, Černáková L, Kadam S, Kaushik KS, Salehi B et al. Advances in chemical and biological methods to identify microorganisms-from past to present. Microorganisms 2019; 7:E130 [View Article]
    [Google Scholar]
  8. Scales BS, Dickson RP, LiPuma JJ, Huffnagle GB. Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin Microbiol Rev 2014; 27:927–948 [View Article]
    [Google Scholar]
  9. Hol WHG, Bezemer TM, Biere A. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front Plant Sci 2013; 4:81 [View Article]
    [Google Scholar]
  10. Singh M, Kumar A, Singh R, Pandey KD. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 2017; 7:315 [View Article]
    [Google Scholar]
  11. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 1987; 19:11–15
    [Google Scholar]
  12. Minas K, McEwan NR, Newbold CJ, Scott KP. Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol Lett 2011; 325:162–169 [View Article] [PubMed]
    [Google Scholar]
  13. Bodenhausen N, Horton MW, Bergelson J, Ibekwe AM. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 2013; 8:e56329 [View Article] [PubMed]
    [Google Scholar]
  14. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucl Acids Res 2014; 42:D633–D642 [View Article] [PubMed]
    [Google Scholar]
  15. Wick RR, Judd LM, Gorrie CL, Holt KE, Phillippy AM. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  16. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  17. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  19. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38:237–245 [View Article] [PubMed]
    [Google Scholar]
  20. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  21. Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 2014; 42:D26–31 [View Article] [PubMed]
    [Google Scholar]
  22. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 2014; 42:D581–91 [View Article] [PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  25. Mulet M, Gomila M, Lemaitre B, Lalucat J, García-Valdés E. Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov. Syst Appl Microbiol 2012; 35:145–149 [View Article] [PubMed]
    [Google Scholar]
  26. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  27. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article] [PubMed]
    [Google Scholar]
  28. Scales BS, Erb-Downward JR, Huffnagle IM, LiPuma JJ, Huffnagle GB. Comparative genomics of Pseudomonas fluorescens subclade III strains from human lungs. BMC Genomics 2015; 16:1032 [View Article] [PubMed]
    [Google Scholar]
  29. Suzuki S, Kakuta M, Ishida T, Akiyama Y. GHOSTX: an improved sequence homology search algorithm using a query suffix array and a database suffix array. PLoS One 2014; 9:e103833 [View Article] [PubMed]
    [Google Scholar]
  30. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004; 32:11–16 [View Article] [PubMed]
    [Google Scholar]
  31. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  33. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [View Article] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  35. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article] [PubMed]
    [Google Scholar]
  36. Donnarumma G, Buommino E, Fusco A, Paoletti I, Auricchio L et al. Effect of temperature on the shift of Pseudomonas fluorescens from an environmental microorganism to a potential human pathogen. Int J Immunopathol Pharmacol 2010; 23:227–234 [View Article] [PubMed]
    [Google Scholar]
  37. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307 [PubMed]
    [Google Scholar]
  38. Poblete-Morales M, Carvajal D, Almasia R, Michea S, Cantillana C et al. Pseudomonas atacamensis sp. nov., isolated from the rhizosphere of desert bloom plant in the region of Atacama, Chile. Antonie van Leeuwenhoek 2020; 113:1201–1211 [View Article] [PubMed]
    [Google Scholar]
  39. Kwon SW, Kim JS, Park IC, Yoon SH, Park DH et al. Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov., and Pseudomonas jinjuensis sp. nov., novel species from farm soils in korea. Int J Syst Evol Microbiol 2003; 53:21–27 [View Article]
    [Google Scholar]
  40. Pascual J, García-López M, Bills GF, Genilloud O. Pseudomonas granadensis sp. nov., a new bacterial species isolated from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. Int J Syst Evol Microbiol 2015; 65:625–632 [View Article] [PubMed]
    [Google Scholar]
  41. López JR, Diéguez AL, Doce A, De la Roca E, De la Herran R et al. Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). Int J Syst Evol Microbiol 2012; 62:874–882 [View Article] [PubMed]
    [Google Scholar]
  42. Cámara B, Strömpl C, Verbarg S, Spröer C, Pieper DH et al. Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov., and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. Int J Syst Evol Microbiol 2007; 57:923–931
    [Google Scholar]
  43. Jia J, Wang X, Deng P, Ma L, Baird SM et al. Pseudomonas glycinae sp. nov. isolated from the soybean rhizosphere. MicrobiologyOpen 2020; 9:e1101 [View Article] [PubMed]
    [Google Scholar]
  44. Chang D-H, Rhee M-S, Kim J-S, Lee Y, Park MY et al. Pseudomonas kribbensis sp. nov., isolated from garden soils in Daejeon, Korea. Antonie van Leeuwenhoek 2016; 109:1433–1446 [View Article] [PubMed]
    [Google Scholar]
  45. Tvrzová L, Schumann P, Spröer C, Sedláček I, Páčová Z et al. Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii. Int J Syst Evol Microbiol 2006; 56:2657–2663 [View Article] [PubMed]
    [Google Scholar]
  46. Schlusselhuber M, Girard L, Cousin FJ, Lood C, De Mot R et al. Pseudomonas crudilactis sp. nov., isolated from raw milk in France. Antonie van Leeuwenhoek 2021; 114:719–730 [View Article] [PubMed]
    [Google Scholar]
  47. Girard L, Lood C, Höfte M, Vandamme P, Rokni-Zadeh H et al. The ever-expanding Pseudomonas genus: description of 43 new species and partition of the Pseudomonas putida group. Microorganisms 2021; 9:1766 [View Article] [PubMed]
    [Google Scholar]
  48. Duman M, Mulet M, Altun S, Burcin Saticioglu I, Gomila M et al. Pseudomonas anatoliensis sp. nov and Pseudomonas iridis sp. nov. isolated from fish. Syst Appl Microbiol 2021; 44:126198 [View Article] [PubMed]
    [Google Scholar]
  49. Acosta-Martı́nez V, Tabatabai MA. Arylamidase activity in soils: effect of trace elements and relationships to soil properties and activities of amidohydrolases. Soil Biol Biochem 2001; 33:17–23 [View Article]
    [Google Scholar]
  50. Morimoto Y, Uwabe K, Tohya M, Hiramatsu K, Kirikae T et al. Pseudomonas atagosis sp. nov., and Pseudomonas akappagea sp. nov., new soil bacteria isolated from samples on the volcanic Island Izu Oshima, Tokyo. Curr Microbiol 2020; 77:1909–1915 [View Article]
    [Google Scholar]
  51. Ramírez-Bahena M-H, Cuesta MJ, Flores-Félix JD, Mulas R, Rivas R et al. Pseudomonas helmanticensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2014; 64:2338–2345 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005268
Loading
/content/journal/ijsem/10.1099/ijsem.0.005268
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error