1887

Abstract

An aerobic, Gram-stain-negative, rod-shaped and motile strain, designated SCS-3, was isolated from deep-sea sediment of the South China Sea. Phylogenetic analysis based on the 16S rRNA gene sequence similarities revealed that strain SCS-3 represented a novel species of the genus , with closely related strains '' MSA67 (98.61 %), IFO13584 (98.22 %) and IO390501 (97.72 %). The G+C content of the genomic DNA is 63.44 mol%. The digital DNA–DNA hybridization values with '' MSA67, IFO13584 and IO390501 were 24.50, 21.8 and 24.80 %, respectively. The major polar lipids of strain SCS-3 were diphosphatidylglycerol, phosphatidylglycerol and three unidentified glycolipids. Ubiquinone-10 was the sole isoprenoid quinone, and C, C 7 11-methyl and summed feature 8 (C ω7 and/or C ω6) were the major fatty acids. Based on polyphasic taxonomic data, strain SCS-3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SCS-3 (=JCM 34403=GDMCC 1.2221).

Funding
This study was supported by the:
  • the Agricultural Science and Technology Innovation Program of CAAS (Award CAAS-ZDRW202009)
    • Principle Award Recipient: MinLin
  • the National Natural Science Foundation of China (Award No. 31930004)
    • Principle Award Recipient: MinLin
  • the National Transgenic Major Program of China (Award 2019ZX08010-004)
    • Principle Award Recipient: ZhengfuZHOU
  • the National Key R&D Program of China (Award No.2018YFA0901000,2018YFA0901003)
    • Principle Award Recipient: ZhengfuZHOU
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005258
2022-02-25
2024-04-27
Loading full text...

Full text loading...

References

  1. Nakagawa Y, Sakane T, Yokota A. Transfer of “Pseudomonas riboflavina” (Foster 1944), a Gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Bacteriol 1996; 46:16–22 [View Article] [PubMed]
    [Google Scholar]
  2. Foster JW. Microbiological aspects of riboflavin. J Bacteriol 1944; 47:27–41 [View Article]
    [Google Scholar]
  3. Vanparys B, Heylen K, Lebbe L, De Vos P. Devosia limi sp. nov., isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 2005; 55:1997–2000 [View Article] [PubMed]
    [Google Scholar]
  4. Bautista VV, Monsalud RG, Yokota A. Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi. Int J Syst Evol Microbiol 2010; 60:627–632 [View Article] [PubMed]
    [Google Scholar]
  5. Xu L, Zhang Y, Read N, Liu S, Friman V-P. Devosia nitraria sp. nov., a novel species isolated from the roots of Nitraria sibirica in China. Antonie van Leeuwenhoek 2017; 110:1475–1483 [View Article] [PubMed]
    [Google Scholar]
  6. Yoo S-H, Weon H-Y, Kim B-Y, Hong S-B, Kwon S-W et al. Devosia soli sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 2006; 56:2689–2692 [View Article] [PubMed]
    [Google Scholar]
  7. Yoon J-H, Kang S-J, Park S, Oh T-K. Devosia insulae sp. nov., isolated from soil, and emended description of the genus Devosia . Int J Syst Evol Microbiol 2007; 57:1310–1314 [View Article] [PubMed]
    [Google Scholar]
  8. Du J, Kook M, Akter S, Singh H, Won K et al. Devosia humi sp. nov., isolated from soil of a Korean pine (Pinus koraiensis) garden. Int J Syst Evol Microbiol 2016; 66:341–346 [View Article] [PubMed]
    [Google Scholar]
  9. Mohd Nor MN, Sabaratnam V, Tan GYA. Devosia elaeis sp. nov., isolated from oil palm rhizospheric soil. Int J Syst Evol Microbiol 2017; 67:851–855 [View Article] [PubMed]
    [Google Scholar]
  10. Quan X-T, Siddiqi MZ, Liu Q-Z, Lee S-M, Im W-T. Devosia ginsengisoli sp. nov., isolated from ginseng cultivation soil. Int J Syst Evol Microbiol 2020; 70:1489–1495 [View Article] [PubMed]
    [Google Scholar]
  11. Kumar M, Verma M, Lal R. Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 2008; 58:861–865 [View Article] [PubMed]
    [Google Scholar]
  12. Verma M, Kumar M, Dadhwal M, Kaur J, Lal R. Devosia albogilva sp. nov. and Devosia crocina sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 2009; 59:795–799 [View Article]
    [Google Scholar]
  13. Zhang D-C, Redzic M, Liu H-C, Zhou Y-G, Schinner F et al. Devosia psychrophila sp. nov. and Devosia glacialis sp. nov., from alpine glacier cryoconite, and an emended description of the genus Devosia . Int J Syst Evol Microbiol 2012; 62:710–715 [View Article] [PubMed]
    [Google Scholar]
  14. Romanenko LA, Tanaka N, Svetashev VI. Devosia submarina sp. nov., isolated from deep-sea surface sediments. Int J Syst Evol Microbiol 2013; 63:3079–3085 [View Article] [PubMed]
    [Google Scholar]
  15. Jia Y-Y, Sun C, Pan J, Zhang W-Y, Zhang X-Q et al. Devosia pacifica sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:2637–2641 [View Article] [PubMed]
    [Google Scholar]
  16. Chen Y, Zhu S, Lin D, Wang X, Yang J et al. Devosia naphthalenivorans sp. nov., isolated from East Pacific Ocean sediment. Int J Syst Evol Microbiol 2019; 69:1974–1979 [View Article] [PubMed]
    [Google Scholar]
  17. Lin D, Huang Y, Chen Y, Zhu S, Yang J et al. Devosia indica sp. nov., isolated from surface seawater in the Indian Ocean. Int J Syst Evol Microbiol 2020; 70:340–345 [View Article] [PubMed]
    [Google Scholar]
  18. Liu Y, Du J, Zhang J, Lai Q, Shao Z et al. Devosia marina sp. nov., isolated from deep seawater of the South China Sea, and reclassification of Devosia subaequoris as a later heterotypic synonym of Devosia soli. Int J Syst Evol Microbiol 2020; 70:3062–3068 [View Article] [PubMed]
    [Google Scholar]
  19. Lee SD. Devosia subaequoris sp. nov., isolated from beach sediment. Int J Syst Evol Microbiol 2007; 57:2212–2215 [View Article] [PubMed]
    [Google Scholar]
  20. Ma F, Zi Z-D, Li W, Wang Z-X, Lu J et al. Devosia sediminis sp. nov., isolated from subterranean sediment. Arch Microbiol 2021; 203:4517–4523 [View Article] [PubMed]
    [Google Scholar]
  21. Wang G, Wang Y, Ji F, Xu L, Yu M et al. Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16. Food Chem 2019; 276:436–442 [View Article] [PubMed]
    [Google Scholar]
  22. Talwar C, Nagar S, Kumar R, Scaria J, Lal R et al. Defining the environmental adaptations of genus Devosia: insights into its expansive short peptide transport system and positively selected genes. Sci Rep 2020; 10:1–18 [View Article] [PubMed]
    [Google Scholar]
  23. Lane D. 16S/23s rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley & Sons; 1991 pp 115–175
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  25. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  26. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  29. Luo R, Liu B, Xie Y, Li Z, Huang W et al. Erratum: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2015; 4:1 [View Article] [PubMed]
    [Google Scholar]
  30. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  32. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  34. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  35. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  36. Smibert R, Krieg N. Phenotypic characterization. In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–655
    [Google Scholar]
  37. Komagata K, Suzuki K-I. 4 lipid and cell-wall analysis in bacterial systematics. In Methods in Microbiology vol 19 Academic Press; 1988 pp 161–207
    [Google Scholar]
  38. Da Costa MS, Albuquerque L, Nobre MF, Wait R. The identification of polar lipids in prokaryotes. In Taxonomy of Prokaryotes. Methods in Microbiology London, United Kingdom: Academic Press; 2011 pp 165–181
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005258
Loading
/content/journal/ijsem/10.1099/ijsem.0.005258
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error