1887

Abstract

A coccus-shaped organism, designated ALS3, was isolated from fresh coffee cherries collected at a farm located in the Ali Mountain region of Taiwan. Sequence analysis of its 16S rRNA gene indicated that strain ALS3 belongs to the genus and has more than 98.5 % sequence similarity to and . When comparing the ALS3 genome with these two type strains, the average nucleotide identity values and digital DNA–DNA hybridization values were 72.6–73.3 and 19.2 %, respectively. The G+C content of the genomic DNA from strain ALS3 was 35.6 mol%. Results of sequence analysis, together with enzymatic activities and characteristics of carbohydrate metabolism, indicated that strain ALS3 is distinct and represents a novel species, for which the name sp. nov. is proposed. The type strain is ALS3 (=NBRC 109593=BCRC 80605).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005255
2022-02-18
2024-04-27
Loading full text...

Full text loading...

References

  1. Morandi S, Cremonesi P, Povolo M, Brasca M. Enterococcus lactis sp. nov., from Italian raw milk cheeses. Int J Syst Evol Microbiol 2012; 62:1992–1996 [View Article] [PubMed]
    [Google Scholar]
  2. Tanasupawat S, Sukontasing S, Lee JS. Enterococcus thailandicus sp. nov., isolated from fermented sausage ('mum’) in Thailand. Int J Syst Evol Microbiol 2008; 58:1630–1634 [View Article] [PubMed]
    [Google Scholar]
  3. Švec P, Vandamme P, Bryndová H, Holochová P, Kosina M et al. Enterococcus plantarum sp. nov., isolated from plants. Int J Syst Evol Microbiol 2012; 62:1499–1505 [View Article] [PubMed]
    [Google Scholar]
  4. Frolková P, Švec P, Sedláček I, Mašlaňová I, Černohlávková J et al. Enterococcus alcedinis sp. nov., isolated from common kingfisher (Alcedo atthis). Int J Syst Evol Microbiol 2013; 63:3069–3074 [View Article] [PubMed]
    [Google Scholar]
  5. Kim JY, Shin N-R, Na H-K, Hyun D-W, Whon TW et al. Enterococcus diestrammenae sp. nov., isolated from the gut of Diestrammena coreana. Int J Syst Evol Microbiol 2013; 63:4540–4545 [View Article] [PubMed]
    [Google Scholar]
  6. Sedláček I, Holochová P, Mašlaňová I, Kosina M, Spröer C et al. Enterococcus ureilyticus sp. nov. and Enterococcus rotai sp. nov., two urease-producing enterococci from the environment. Int J Syst Evol Microbiol 2013; 63:502–510 [View Article] [PubMed]
    [Google Scholar]
  7. Li CY, Tian F, Zhao YD, Gu CT. Enterococcus xiangfangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2014; 64:1012–1017 [View Article] [PubMed]
    [Google Scholar]
  8. Leong K, Chen Y, Pan S, Chen J, Wu H et al. Diversity of lactic acid bacteria associated with fresh coffee cherries in Taiwan. Curr Microbiol 2014; 68:440–447 [View Article] [PubMed]
    [Google Scholar]
  9. Tyrrell GJ, Turnbull L, Teixeira LM, Lefebvre J, Carvalho M da GS et al. Enterococcus gilvus sp. nov. and Enterococcus pallens sp. nov. isolated from human clinical specimens. J Clin Microbiol 2002; 40:1140–1145 [View Article] [PubMed]
    [Google Scholar]
  10. Koort J, Coenye T, Vandamme P, Sukura A, Björkroth J. Enterococcus hermanniensis sp. nov., from modified-atmosphere-packaged broiler meat and canine tonsils. Int J Syst Evol Microbiol 2004; 54:1823–1827 [View Article] [PubMed]
    [Google Scholar]
  11. Lim YK, Park S-N, Shin JH, Chang Y-H, Shin Y et al. Streptococcus periodonticum sp. nov., isolated from human subgingival dental plaque of periodontitis lesion. Curr Microbiol 2019; 76:835–841 [View Article] [PubMed]
    [Google Scholar]
  12. Okada S, Suzuki Y, Kozaki M. A new heterofermentative Lactobacillus species with meso-diaminopimelic acid in peptidoglycan, Lactobacillus vaccinostercus Kozaki and Okada sp. nov. J Gen Appl Microbiol 1979; 25:215–221 [View Article]
    [Google Scholar]
  13. Aguado-Urda M, López-Campos GH, Blanco MM, Fernández-Garayzábal JF, Cutuli MT et al. Genome sequence of Lactococcus garvieae 21881, isolated in a case of human septicemia. J Bacteriol 2011; 193:4033–4034 [View Article] [PubMed]
    [Google Scholar]
  14. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151:2141–2150 [View Article] [PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  17. Chor B, Hendy MD, Snir S. Maximum likelihood Jukes-Cantor triplets: analytic solutions. Mol Biol Evol 2006; 23:626–632 [View Article] [PubMed]
    [Google Scholar]
  18. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  19. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  22. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  23. Klimke W, Agarwala R, Badretdin A, Chetvernin S, Ciufo S et al. The National Center for Biotechnology Information’s protein clusters database. Nucleic Acids Res 2009; 37:D216–23 [View Article] [PubMed]
    [Google Scholar]
  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  25. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  28. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005255
Loading
/content/journal/ijsem/10.1099/ijsem.0.005255
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error