1887

Abstract

The alphaproteobacterial family is highly diverse, with 168 species with validly published names classified into 17 genera with validly published names. Most named genera in this family are delineated based on genomic relatedness and phylogenetic relationships, but some historically named genera show inconsistent distribution and phylogenetic breadth. The most problematic is , which is notorious for being highly paraphyletic, as most newly described species in the family are assigned to this genus without consideration of their proximity to existing genera, or the need to create novel genera. Moreover, many genera lack synapomorphic traits that would give them biological and ecological significance. We propose a common framework for genus delimitation within the family , wherein genera are defined as monophyletic groups in a core-genome gene phylogeny, that are separated from related species using a pairwise core-proteome average amino acid identity (cpAAI) threshold of approximately 86 %. We further propose that additional genomic or phenotypic evidence can justify division of species into separate genera even if they share greater than 86 % cpAAI. Applying this framework, we propose to reclassify and into gen. nov. Data is also provided to support the formation of comb. nov., comb. nov., comb. nov., comb. nov., comb. nov. and comb. nov. Lastly, we present arguments that the unification of the genera and in Opinion 84 of the Judicial Commission is no longer justified by current genomic and phenotypic data. Despite pairwise cpAAI values for all species and all species being >86 %, additional genomic and phenotypic data suggest that they significantly differ in their biology and ecology. We therefore propose emended descriptions of and , which we argue should be considered as separate genera.

Funding
This study was supported by the:
  • Wellcome Trust (Award 206194)
    • Principle Award Recipient: FlorentLassalle
  • H2020 ERA-NETs SUSFOOD2 and CORE Organic Cofund
    • Principle Award Recipient: AlessioMengoni
  • Italian Ministry of Agriculture (Award MICRO4Legumes)
    • Principle Award Recipient: AlessioMengoni
  • Deutsche Forschungsgemeinschaft (Award 429677233)
    • Principle Award Recipient: NemanjaKuzmanović
  • Natural Sciences and Engineering Research Council of Canada
    • Principle Award Recipient: GeorgeC diCenzo
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005243
2022-03-03
2022-06-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/3/ijsem005243.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005243&mimeType=html&fmt=ahah

References

  1. Kuzmanovic N, Fagorzi C, Mengoni A, Lassalle F, diCenzo G. Taxonomy of rhizobiaceae revisited: proposal of a new framework for genus delimitation. Figshare 2022 [View Article]
    [Google Scholar]
  2. Conn HJ. Taxonomic relationships of certain non-sporeforming rods in soil. J Bacteriol 1938; 36:320–321
    [Google Scholar]
  3. Alves LMC, de SJ, Varani A de M, Lemos E de M. The family Rhizobiaceae. The Prokaryotes 2014419–437
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  5. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  6. Young JPW, Moeskjær S, Afonin A, Rahi P, Maluk M et al. Defining the Rhizobium leguminosarum species complex. Genes 2021; 12:111 [View Article]
    [Google Scholar]
  7. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852–1863 [View Article] [PubMed]
    [Google Scholar]
  8. Lassalle F, Muller D, Nesme X. Ecological speciation in bacteria: reverse ecology approaches reveal the adaptive part of bacterial cladogenesis. Res Microbiol 2015; 166:729–741 [View Article] [PubMed]
    [Google Scholar]
  9. Casida LE. Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol 1982; 32:339–345 [View Article]
    [Google Scholar]
  10. Chen WX, Yan GH, Li JL. Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 1988; 38:392–397 [View Article]
    [Google Scholar]
  11. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article] [PubMed]
    [Google Scholar]
  12. Vinuesa P, Ochoa-Sánchez LE, Contreras-Moreira B. GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring pan-genome phylogenies, used for a critical geno-taxonomic revision of the genus Stenotrophomonas. Front Microbiol 2018; 9:771 [View Article] [PubMed]
    [Google Scholar]
  13. Kuzmanović N, Biondi E, Overmann J, Puławska J, Verbarg S et al. Revisiting the taxonomy of Allorhizobium vitis (i.e. agrobacterium vitis) using genomics - emended description of All. vitis sensu stricto and description of Allorhizobium ampelinum sp. nov. bioRxiv 2020 [View Article]
    [Google Scholar]
  14. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  15. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  16. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019; 35:526–528 [View Article] [PubMed]
    [Google Scholar]
  17. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  18. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  19. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  21. Fagorzi C, Ilie A, Decorosi F, Cangioli L, Viti C et al. Symbiotic and nonsymbiotic members of the genus Ensifer (syn. Sinorhizobium) are separated into two clades based on comparative genomics and high-throughput phenotyping. Genome Biol Evol 2020; 12:2521–2534 [View Article] [PubMed]
    [Google Scholar]
  22. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  23. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  24. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  25. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article] [PubMed]
    [Google Scholar]
  26. Wirth JS, Whitman WB. Phylogenomic analyses of a clade within the Roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 2018; 68:2393–2411 [View Article] [PubMed]
    [Google Scholar]
  27. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article] [PubMed]
    [Google Scholar]
  28. Lassalle F, Dastgheib SMM, Zhao F-J, Zhang J, Verbarg S et al. Phylogenomics reveals the basis of adaptation of Pseudorhizobium species to extreme environments and supports a taxonomic revision of the genus. Syst Appl Microbiol 2021; 44:126165 [View Article] [PubMed]
    [Google Scholar]
  29. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 2015; 38:84–90 [View Article] [PubMed]
    [Google Scholar]
  30. Rahi P, Khairnar M, Hagir A, Narayan A, Jain KR et al. Peteryoungia gen. nov. with four new species combinations and description of Peteryoungia desertarenae sp. nov., and taxonomic revision of the genus Ciceribacter based on phylogenomics of Rhizobiaceae. Arch Microbiol 2021; 203:3591–3604 [View Article]
    [Google Scholar]
  31. Oren A, Garrity GM. Valid publication of new names and new combinations effectively published outside the ijsem. Int J Syst Evol Microbiol 2021; 71:005096
    [Google Scholar]
  32. De Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G et al. Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 1994; 44:715–733 [View Article]
    [Google Scholar]
  33. Lindstrom K, Martinez-Romero ME. International Committee on Systematics of Prokaryotes: Subcommittee on the taxonomy of Agrobacterium and Rhizobium. Int J Syst Evol Microbiol 2002; 52:2337 [View Article]
    [Google Scholar]
  34. Willems A, Fernández-López M, Muñoz-Adelantado E, Goris J, De Vos P et al. Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an opinion. Int J Syst Evol Microbiol 2003; 53:1207–1217 [View Article] [PubMed]
    [Google Scholar]
  35. Young JM. The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination “Sinorhizobium adhaerens” (Casida 1982) Willems et al. 2003 legitimate? Request for an Opinion. Int J Syst Evol Microbiol 2003; 53:2107–2110 [View Article]
    [Google Scholar]
  36. Judicial Commission of the International Committee on Systematics of Prokaryotes The genus name Sinorhizobium Chen et al. 1988 is a later synonym of Ensifer Casida 1982 and is not conserved over the latter genus name, and the species name “Sinorhizobium adhaerens” is not validly published. Opinion 84. Int J Syst Evol Microbiol 2008; 58:1973 [View Article] [PubMed]
    [Google Scholar]
  37. Lindström K, Young JPW. International Committee on Systematics of Prokaryotes; Subcommittee on the Taxonomy of Agrobacterium and Rhizobium: minutes of the meetings, 31 August 2008, Gent, Belgium. Int J Syst Evol Microbiol 2009; 59:921–922 [View Article] [PubMed]
    [Google Scholar]
  38. Young JM. Sinorhizobium versus Ensifer: may a taxonomy subcommittee of the ICSP contradict the Judicial Commission?. Int J Syst Evol Microbiol 2010; 60:1711–1713 [View Article] [PubMed]
    [Google Scholar]
  39. Tindall BJ. The correct name of the taxon that contains the type strain of Rhodococcus equi. Int J Syst Evol Microbiol 2014; 64:302–308 [View Article] [PubMed]
    [Google Scholar]
  40. de Lajudie P, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the meeting by video conference, 11 July 2018. Int J Syst Evol Microbiol 2019; 69:1835–1840 [View Article]
    [Google Scholar]
  41. Martens M, Delaere M, Coopman R, De Vos P, Gillis M et al. Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 2007; 57:489–503 [View Article] [PubMed]
    [Google Scholar]
  42. Kumar HKS, Gan HM, Tan MH, Eng WWH, Barton HA et al. Genomic characterization of eight Ensifer strains isolated from pristine caves and a whole genome phylogeny of Ensifer (Sinorhizobium). J Genomics 2017;5:12–15. 10.7150/jgen.17863. [PubMed]
  43. Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P et al. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 2008; 58:200–214 [View Article] [PubMed]
    [Google Scholar]
  44. diCenzo GC, Debiec K, Krzysztoforski J, Uhrynowski W, Mengoni A et al. Genomic and biotechnological characterization of the heavy-metal resistant, arsenic-oxidizing bacterium Ensifer sp. M14. Genes 2018; 9:E379 [View Article] [PubMed]
    [Google Scholar]
  45. Garrido-Oter R, Nakano RT, Dombrowski N, Ma K-W. AgBiome Team et al. Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 2018; 24:155–167 [View Article] [PubMed]
    [Google Scholar]
  46. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  47. diCenzo GC, Cangioli L, Nicoud Q, Cheng JHT, Blow MJ et al. DNA methylation in Ensifer species during free-living growth and during nitrogen-fixing symbiosis with Medicago spp. mSystems 2022; 7:e01092–21 [View Article]
    [Google Scholar]
  48. Zweiger G, Marczynski G, Shapiro L. A Caulobacter DNA methyltransferase that functions only in the predivisional cell. J Mol Biol 1994; 235:472–485 [View Article] [PubMed]
    [Google Scholar]
  49. Wright R, Stephens C, Shapiro L. The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus. J Bacteriol 1997; 179:5869–5877 [View Article] [PubMed]
    [Google Scholar]
  50. Wang ET, Tan ZY, Willems A, Fernández-López M, Reinhold-Hurek B et al. Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 2002; 52:1687–1693 [View Article] [PubMed]
    [Google Scholar]
  51. Wang YC, Wang F, Hou BC, Wang ET, Chen WF et al. Proposal of Ensifer psoraleae sp. nov., Ensifer sesbaniae sp. nov., Ensifer morelense comb. nov. and Ensifer americanum comb. nov. Syst Appl Microbiol 2013; 36:467–473 [View Article]
    [Google Scholar]
  52. Wilks M. Predation Mediated Carbon Turnover in Nutrient-Limited Cave Environments. MSc Thesis University of Akron; 2013
    [Google Scholar]
  53. Martin MO. Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol Biotechnol 2002; 4:467–477 [PubMed]
    [Google Scholar]
  54. Cohan FM. Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Philos Trans R Soc Lond B Biol Sci 2006; 361:1985–1996 [View Article] [PubMed]
    [Google Scholar]
  55. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2015; 65:4284–4287
    [Google Scholar]
  56. de Lajudie P, Mousavi SA, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia and Agrobacteria Minutes of the closed meeting by videoconference, 6 July 2020. Int J Syst Evol Microbiol 2021; 71:004784 [View Article]
    [Google Scholar]
  57. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  58. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article] [PubMed]
    [Google Scholar]
  59. Zhao J-J, Zhang J, Zhang R-J, Zhang C-W, Yin H-Q et al. Rhizobium rhizosphaerae sp. nov., a novel species isolated from rice rhizosphere. Antonie van Leeuwenhoek 2017; 110:651–656 [View Article] [PubMed]
    [Google Scholar]
  60. Peng G, Yuan Q, Li H, Zhang W, Tan Z. Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 2008; 58:2158–2163 [View Article] [PubMed]
    [Google Scholar]
  61. Li Y, Yan J, Yu B, Wang ET, Li X et al. Ensifer alkalisoli sp. nov. isolated from root nodules of Sesbania cannabina grown in saline-alkaline soils. Int J Syst Evol Microbiol 2016; 66:5294–5300 [View Article] [PubMed]
    [Google Scholar]
  62. Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A et al. Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int J Syst Evol Microbiol 2010; 60:664–674 [View Article] [PubMed]
    [Google Scholar]
  63. Yan H, Yan J, Sui XH, Wang ET, Chen WX et al. Ensifer glycinis sp. nov., a rhizobial species associated with species of the genus Glycine. Int J Syst Evol Microbiol 2016; 66:2910–2916 [View Article] [PubMed]
    [Google Scholar]
  64. Nick G, de Lajudie P, Eardly BD, Suomalainen S, Paulin L et al. Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 1999; 49 Pt 4:1359–1368 [View Article] [PubMed]
    [Google Scholar]
  65. Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX. Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 2002; 52:2231–2239 [View Article] [PubMed]
    [Google Scholar]
  66. Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC. Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 1996; 46:972–980 [View Article] [PubMed]
    [Google Scholar]
  67. Lloret L, Ormeño-Orrillo E, Rincón R, Martínez-Romero J, Rogel-Hernández MA et al. Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 2007; 30:280–290 [View Article] [PubMed]
    [Google Scholar]
  68. Chen W, Sheng X-F, He L-Y, Huang Z. Rhizobium yantingense sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 2015; 65:412–417 [View Article] [PubMed]
    [Google Scholar]
  69. Zhang X, Li B, Wang H, Sui X, Ma X et al. Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2012; 62:1871–1876 [View Article] [PubMed]
    [Google Scholar]
  70. Zhang S, Yang S, Chen W, Chen Y, Zhang M et al. Rhizobium arenae sp. nov., isolated from the sand of Desert Mu Us, China. Int J Syst Evol Microbiol 2017; 67:2098–2103 [View Article] [PubMed]
    [Google Scholar]
  71. Kaur J, Verma M, Lal R. Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Muller 1986 as Rhizobium aggregatum comb. nov. Int J Syst Evol Microbiol 2011; 61:1218–1225 [View Article] [PubMed]
    [Google Scholar]
  72. Hirsch P, Müller M. Blastobacter aggregatus sp. nov., Blastobacter capsulatus sp. nov., and Blastobacter denitrificans sp. nov., new budding bacteria from freshwater habitats. Syst Appl Microbiol 1985; 6:281–286 [View Article]
    [Google Scholar]
  73. Turdahon M, Osman G, Hamdun M, Yusuf K, Abdurehim Z et al. Rhizobium tarimense sp. nov., isolated from soil in the ancient Khiyik River. Int J Syst Evol Microbiol 2013; 63:2424–2429 [View Article] [PubMed]
    [Google Scholar]
  74. Behrendt U, Kämpfer P, Glaeser SP, Augustin J, Ulrich A. Characterization of the N2O-producing soil bacterium Rhizobium azooxidifex sp. nov. Int J Syst Evol Microbiol 2016; 66:2354–2361 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005243
Loading
/content/journal/ijsem/10.1099/ijsem.0.005243
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error