1887

Abstract

Strain NCCP-691 was isolated from a soil sample collected from an arid soil in Karak, Khyber Pakhtunkhwa, Pakistan. Phenotypically, the cells were Gram-stain-negative, aerobic and motile rods. The organism was able to grow between 20–40 °C (optimum at 30–37 °C), at pH 5.5–8.0 (optimum at pH 7.0–7.2) and tolerated 0–1.5% NaCl (w/v) (optimum at 0–0.5). Based on 16S rRNA gene sequences, strain NCCP-691 formed a distinct phylogenetic clade with , . , . and . (having sequence similarities of 99.0; 98.1; 98.0 and 97.7% respectively). Phylogenetic analyses based on the whole genome sequences confirmed that strain NCCP-691 should be affiliated to the genus . The average nucleotide identity values compared to other species of were below 95–96 % and digital DNA–DNA hybridization values were less than 70 %. Chemotaxonomic analyses showed that the strain had ubiquinone-8, as the only respiratory quinine. The major cellular fatty acids were summed feature 3 (C ω 7/C ω 6 c, 35.9 %), summed feature 8 (C ω 7/C ω 6 c, 26.9 %) and C (22.9 %) and the polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The genomic DNA G+C content was 65.5 mol% (from draft genome). Genome analyses showed that strain NCCP-691 had terpene and arylpolyene biosynthetic genes clusters and genes related to resistance against heavy metals. Based on phylogenetic analyses, phenotypic features and genomic comparison, it is proposed that strain NCCP-691 is a novel species of the genus and the name sp. nov. is proposed. Type strain is NCCP-691 (=KCTC 52721=CGMCC 1.13600).

Funding
This study was supported by the:
  • Chinese Academy of Sciences President’s International Fellowship Initiative (Award 2020VBA0020)
    • Principle Award Recipient: IftikharAhmed
  • National Natural Science Foundation of China (Award 32000084)
    • Principle Award Recipient: Yong-HongLiu
  • Innovative Research Group Project of the National Natural Science Foundation of China (Award 32061143043)
    • Principle Award Recipient: Wen-JunLi
  • Xinjiang Uygur Autonomous Region, regional coordinated Innovation Project and Shanghai Cooperation Organization Science and Technology Partnership Program (Award 2020E01047)
    • Principle Award Recipient: LiLi
  • Xinjiang Uygur Autonomous Region, regional coordinated Innovation Project and Shanghai Cooperation Organization Science and Technology Partnership Program (Award 2021E01018)
    • Principle Award Recipient: Wen-JunLi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005232
2022-02-09
2024-11-13
Loading full text...

Full text loading...

References

  1. Lin S-Y, Hameed A, Arun AB, Liu Y-C, Hsu Y-H et al. Description of Noviherbaspirillum malthae gen. nov., sp. nov., isolated from an oil-contaminated soil, and proposal to reclassify Herbaspirillum soli, Herbaspirillum aurantiacum, Herbaspirillum canariense and Herbaspirillum psychrotolerans as Noviherbaspirillum soli comb. nov., Noviherbaspirillum aurantiacum comb. nov., Noviherbaspirillum canariense comb. nov. and Noviherbaspirillum psychrotolerans comb. nov. based on polyphasic analysis. Int J Syst Evol Microbiol 2013; 63:4100–4107 [View Article]
    [Google Scholar]
  2. Peta V, Raths R, Bücking H. Massilia horti sp. nov. and Noviherbaspirillum arenae sp. nov., two novel soil bacteria of the Oxalobacteraceae. Int J Syst Evol Microbiol 2021; 71:1–10 [View Article]
    [Google Scholar]
  3. Park Y, Maeng S, Lee SE, Han JH, Lee YK et al. Noviherbaspirillum galbum sp. nov., a bacterium isolated from soil. Arch Microbiol 2021; 203:823–828 [View Article] [PubMed]
    [Google Scholar]
  4. Sundararaman A, Srinivasan S, Lee S-S. Noviherbaspirillum humi sp. nov., isolated from soil. Antonie van Leeuwenhoek 2016; 109:697–704 [View Article] [PubMed]
    [Google Scholar]
  5. Carro L, Rivas R, León-Barrios M, González-Tirante M, Velázquez E et al. Herbaspirillum canariense sp. nov., Herbaspirillum aurantiacum sp. nov. and Herbaspirillum soli sp. nov., isolated from volcanic mountain soil, and emended description of the genus Herbaspirillum. Int J Syst Evol Microbiol 2012; 62:1300–1306 [View Article] [PubMed]
    [Google Scholar]
  6. Chaudhary DK, Kim J. Noviherbaspirillum agri sp. nov., isolated from reclaimed grassland soil, and reclassification of Herbaspirillum massiliense (Lagier et al., 2014) as Noviherbaspirillum massiliense comb. nov. Int J Syst Evol Microbiol 2017; 67:1508–1515 [View Article]
    [Google Scholar]
  7. Kim S-J, Moon J-Y, Weon H-Y, Hong S-B, Seok S-J et al. Noviherbaspirillum suwonense sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2014; 64:1552–1558 [View Article] [PubMed]
    [Google Scholar]
  8. Xue H, Piao C-G, Lin Y-H, Bian D-R, Li Y. Noviherbaspirillum aerium sp. nov., isolated from air. Int J Syst Evol Microbiol 2020; 70:6390–6395 [View Article]
    [Google Scholar]
  9. Ishii S, Ashida N, Ohno H, Segawa T, Yabe S et al. Noviherbaspirillum denitrificans sp. nov., a denitrifying bacterium isolated from rice paddy soil and Noviherbaspirillum autotrophicum sp. nov., a denitrifying, facultatively autotrophic bacterium isolated from rice paddy soil and proposal to reclassify Herbaspirillum massiliense as Noviherbaspirillum massiliense comb. nov. Int J Syst Evol Microbiol 2017; 67:1841–1848 [View Article] [PubMed]
    [Google Scholar]
  10. Lagier JC, Gimenez G, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Herbaspirillum massiliense sp. nov. Stand Genomic Sci 2012; 7:200–209 [View Article] [PubMed]
    [Google Scholar]
  11. Bajerski F, Ganzert L, Mangelsdorf K, Lipski A, Busse H-J et al. Herbaspirillum psychrotolerans sp. nov., a member of the family Oxalobacteraceae from a glacier forefield. Int J Syst Evol Microbiol 2013; 63:3197–3203 [View Article] [PubMed]
    [Google Scholar]
  12. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology 1966; 16:313–340 [View Article]
    [Google Scholar]
  13. van der Linde K, Lim BT, Rondeel JM, Antonissen LP, de Jong GM. Improved bacteriological surveillance of haemodialysis fluids: a comparison between Tryptic soy agar and Reasoner’s 2A media. Nephrol Dial Transplant 1999; 14:2433–2437 [View Article] [PubMed]
    [Google Scholar]
  14. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP et al. Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2001; 51:357–363 [View Article]
    [Google Scholar]
  15. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article] [PubMed]
    [Google Scholar]
  16. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  17. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  23. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  25. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article] [PubMed]
    [Google Scholar]
  26. Lin SH, Liao YC. CISA: contig integrator for sequence assembly of bacterial genomes. PLoS One 2013; 8:e60843 [View Article] [PubMed]
    [Google Scholar]
  27. NCBI Resource Coordinators Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2013; 41:D8–D20 [View Article] [PubMed]
    [Google Scholar]
  28. Besemer J, Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 2005; 33:W451–4 [View Article] [PubMed]
    [Google Scholar]
  29. Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T et al. RNammer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res 2007; 35:3100–8
    [Google Scholar]
  30. Chan PP, Lowe TM. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. Methods Mol Biol 2019; 1962:1–14 [View Article] [PubMed]
    [Google Scholar]
  31. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res 2003; 31:439–441 [View Article] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  37. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  38. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  39. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003; 4:41 [View Article] [PubMed]
    [Google Scholar]
  40. Kallberg Y, Persson B. KIND-a non-redundant protein database. Bioinformatics 1999; 15:260–261 [View Article] [PubMed]
    [Google Scholar]
  41. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 2000; 28:45–48 [View Article] [PubMed]
    [Google Scholar]
  42. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004; 32:D258–61 [View Article] [PubMed]
    [Google Scholar]
  43. Mulder N, Apweiler R. InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol 2007; 396:59–70 [View Article] [PubMed]
    [Google Scholar]
  44. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  45. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  46. Bertelli C, Laird MR, Williams KP. Simon Fraser University Research Computing Group Lau BY et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45:W30–W35 [View Article] [PubMed]
    [Google Scholar]
  47. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009; 37:D233–8 [View Article] [PubMed]
    [Google Scholar]
  48. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  49. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  50. Ullah I, Sjöstrand J, Andersson P, Sennblad B, Lagergren J. Integrating sequence evolution into probabilistic orthology analysis. Syst Biol 2015; 64:969–982 [View Article] [PubMed]
    [Google Scholar]
  51. Cerny G. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. European J Appl Microbiol Biotechnol 1978; 5:113–122 [View Article]
    [Google Scholar]
  52. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  53. KOVACS N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  54. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  55. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  56. Minnikin DE, Collins MD, Goodfellow M. Fatty Acid and Polar Lipid Composition in the Classification of Cellulomonas, Oerskovia and Related Taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  57. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  58. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  59. Kroppenstedt RM. Separation of Bacterial Menaquinones by HPLC Using Reverse Phase (RP18) and a Silver Loaded Ion Exchanger as Stationary Phases. J Liq Chromatogr 2006; 5:2359–2367 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005232
Loading
/content/journal/ijsem/10.1099/ijsem.0.005232
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error