1887

Abstract

A Gram-stain-negative, catalase- and oxidase-positive and aerobic bacterium, designated strain R798, was isolated from soil in South Korea. Cells were motile rods by means of a single polar flagellum. Growth of strain R798 was observed at 15–35 °C (optimum, 25–30 °C), pH 5.0–8.0 (optimum, 6.0) and 0–1.5 % NaCl (optimum, 0.3 %). Strain R798 contained ubiquinone-8 as the sole isoprenoid quinone, summed feature 3 (C 7 and/or C 6) and C as the major fatty acids and phosphatidylglycerol and phosphatidylethanolamine as the major polar lipids. The DNA G+C content of strain R798 calculated from the whole genome sequence was 63.3 mol%. Phylogenetic analyses based on the 16S rRNA gene and whole genome sequences revealed that strain R798 formed a distinct phyletic lineage within the genus . Strain R798 was most closely related to B528-3 with a 98.0 % 16S rRNA gene sequence similarity. Average nucleotide identity and digital DNA–DNA hybridization values between strain R798 and the type strain of were 79.2 and 22.7 %, respectively. Based on the phenotypic, chemotaxonomic and molecular analyses, strain R798 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is R798 (=KACC 22114=JCM 34601).

Funding
This study was supported by the:
  • National Institute of Biological Resources (KR) (Award NIBR202029201)
    • Principle Award Recipient: CheOk Jeon
  • Chung-Ang University
    • Principle Award Recipient: WoonheeBaek
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005227
2022-02-04
2024-11-07
Loading full text...

Full text loading...

References

  1. La Scola B, Birtles RJ, Mallet MN, Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 1998; 36:2847–2852 [View Article]
    [Google Scholar]
  2. Holochová P, Mašlaňová I, Sedláček I, Švec P, Králová S et al. Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths. Syst Appl Microbiol 2020; 43:126112 [View Article]
    [Google Scholar]
  3. d’Angelo-Picard C, Faure D, Penot I, Dessaux Y. Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. Environ Microbiol 2005; 7:1796–1808 [View Article] [PubMed]
    [Google Scholar]
  4. Raths R, Peta V, Bücking H. Massilia arenosa sp. nov., isolated from the soil of a cultivated maize field. Int J Syst Evol Microbiol 2020; 70:3912–3920 [View Article] [PubMed]
    [Google Scholar]
  5. Zhang B, Yang R, Zhang G, Zhang D, Zhang W et al. Massilia arenae sp. nov., isolated from sand soil in the Qinghai-Tibetan Plateau. Int J Syst Evol Microbiol 2020; 70:2435–2439 [View Article] [PubMed]
    [Google Scholar]
  6. Altankhuu K, Kim J. Massilia solisilvae sp. nov., Massilia terrae sp. nov. and Massilia agilis sp. nov., isolated from forest soil in South Korea by using a newly developed culture method. Int J Syst Evol Microbiol 2017; 67:3026–3032 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang Y-Q, Li W-J, Zhang K-Y, Tian X-P, Jiang Y et al. Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 2006; 56:459–463 [View Article] [PubMed]
    [Google Scholar]
  8. Lee H, Kim DU, Park S, Yoon JH, Ka JO. Massilia chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from soil. Antonie van Leeuwenhoek 2017; 110:751–758 [View Article] [PubMed]
    [Google Scholar]
  9. Kong BH, Li YH, Liu M, Liu Y, Li CL et al. Massilia namucuonensis sp. nov., isolated from a soil sample. Int J Syst Evol Microbiol 2013; 63:352–357 [View Article] [PubMed]
    [Google Scholar]
  10. Shen L, Liu Y, Gu Z, Xu B, Wang N et al. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. Int J Syst Evol Microbiol 2015; 65:2124–2129 [View Article] [PubMed]
    [Google Scholar]
  11. Guo B, Liu Y, Gu Z, Shen L, Liu K et al. Massilia psychrophila sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2016; 66:4088–4093 [View Article] [PubMed]
    [Google Scholar]
  12. Weon H-Y, Kim B-Y, Son J-A, Jang HB, Hong SK et al. Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:1422–1425 [View Article] [PubMed]
    [Google Scholar]
  13. Wang H, Zhang X, Wang S, Zhao B, Lou K et al. Massilia violaceinigra sp. nov., a novel purple-pigmented bacterium isolated from glacier permafrost. Int J Syst Evol Microbiol 2018; 68:2271–2278 [View Article] [PubMed]
    [Google Scholar]
  14. KIm KH, Seo YL, Baek JH, Jin HM, Jeon CO. Paenibacillus agri sp. nov., isolated from soil. Int J Syst Evol Microbiol 2021; 71:004981 [View Article] [PubMed]
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  16. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3:e56 [View Article] [PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  18. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  19. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  20. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  21. Kim J, Na S-I, Kim D, Chun J. UBCG2: Up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article] [PubMed]
    [Google Scholar]
  22. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  24. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–5 [View Article] [PubMed]
    [Google Scholar]
  25. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  27. Adrangi S, Faramarzi MA, Shahverdi AR, Sepehrizadeh Z. Purification and characterization of two extracellular endochitinases from Massilia timonae. Carbohydr Res 2010; 345:402–407 [View Article] [PubMed]
    [Google Scholar]
  28. Frediansyah A, Straetener J, Brötz-Oesterhelt H, Gross H. Massiliamide, a cyclic tetrapeptide with potent tyrosinase inhibitory properties from the Gram-negative bacterium Massilia albidiflava DSM 17472T. J Antibiot (Tokyo) 2021; 74:269–272 [View Article] [PubMed]
    [Google Scholar]
  29. Turnbull AL, Liu Y, Lazarovits G. Isolation of bacteria from the rhizosphere and rhizoplane of potato (Solanum tuberosum) grown in two distinct soils using semi selective media and characterization of their biological properties. Am J Pot Res 2012; 89:294–305 [View Article]
    [Google Scholar]
  30. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  31. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  32. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  33. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  34. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–208
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005227
Loading
/content/journal/ijsem/10.1099/ijsem.0.005227
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error