1887

Abstract

A strictly aerobic, Gram-stain-negative, gliding, rod-shaped bacteria, designated strain S481, was isolated from a surface seawater sample collected at Gunsan marina, in the West Sea of the Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain S481 formed a monophyletic clade with members of the genus , showing 93.7–95.8% sequence similarity to the type strains. Strain S481 has a single circular chromosome of 4.13 Mbp with a DNA G+C content of 37.3 mol%. The values of average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization between strain S481 and all genome-sequenced species of the genus were below 71.2%, 68.6% and 18.9%, respectively, indicating lower values than the standard cut-offs for species delineation. Growth was observed at 20–42 °C (optimum, 37 °C), at pH 6–8 (optimum, pH 7) and with 0 – 6 % NaCl (optimum, 1–2 %). The major fatty acids (>10%) were iso-C, iso-C G and Cω5. The respiratory quinone was MK-7. The major polar lipids were identified as phosphatidylethanolamine, three unidentified aminolipids and five unidentified lipids. Based on the results of phenotypic characterization, phylogenetic analysis and genome-based comparison, strain S481 represents a novel species in the genus , for which we propose the name sp. nov. The type strain is S481 (=KCTC 82209=JCM 34505).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005188
2022-01-19
2022-05-18
Loading full text...

Full text loading...

References

  1. Kirchman DL. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 2002; 39:91–100 [View Article] [PubMed]
    [Google Scholar]
  2. Pommier T, Canbäck B, Riemann L, Boström KH, Simu K et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 2007; 16:867–880 [View Article] [PubMed]
    [Google Scholar]
  3. Alonso C, Warnecke F, Amann R, Pernthaler J. High local and global diversity of Flavobacteria in marine plankton. Environ Microbiol 2007; 9:1253–1266 [View Article] [PubMed]
    [Google Scholar]
  4. Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J 2013; 7:1026–1037 [View Article] [PubMed]
    [Google Scholar]
  5. Díez-Vives C, Nielsen S, Sánchez P, Palenzuela O, Ferrera I et al. Delineation of ecologically distinct units of marine Bacteroidetes in the Northwestern Mediterranean Sea. Mol Ecol 2019; 28:2846–2859 [View Article] [PubMed]
    [Google Scholar]
  6. Nedashkovskaya OI, Kim SB SB, Shin DS, Beleneva IA, Mikhailov VV. Fulvivirga kasyanovii gen. nov., sp. nov.a novel member of the phylum Bacteroidetes isolated from seawater in a mussel farm. Int J Syst Evol Microbiol 2007; 57:1046–1049
    [Google Scholar]
  7. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of bacteroidetes. Front Microbiol 2016; 7:2003 [View Article] [PubMed]
    [Google Scholar]
  8. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  9. Sharma S, Kumar Singh P, Suresh K, Anil Kumar P. Fulvivirga imtechensis sp. nov., a member of the phylum Bacteroidetes. Int J Syst Evol Microbiol 2012; 62:2213–2217 [View Article] [PubMed]
    [Google Scholar]
  10. Jung Y-T, Ha M-J, Park S, Lee J-S, Yoon J-H. Fulvivirga lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2016; 66:2604–2609 [View Article] [PubMed]
    [Google Scholar]
  11. Goldberg SR, Correa H, Haltli BA, Kerr RG. Fulvivirga aurantia sp. and Xanthovirga aplysinae gen. nov., sp. nov., marine bacteria isolated from the sponge aplysina fistularis, and emended description of the genus Fulvivirga . Int J Syst Evol Microbiol 2020; 70:2766–2781
    [Google Scholar]
  12. Giovannoni SJ. The polymerase chain reaction. Stackebrandt E, Goodfellow M. Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991177–203
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  19. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  20. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  21. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  24. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  26. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  27. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  28. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999; 27:29–34 [View Article] [PubMed]
    [Google Scholar]
  29. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–9 [View Article] [PubMed]
    [Google Scholar]
  30. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  31. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  32. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  33. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1861–1868 [View Article] [PubMed]
    [Google Scholar]
  34. Reichenbach H, Kohl W, Bttger-Vetter A, Achenbach H. Flexirubin-type pigments in Flavobacterium . Arch Microbiol 1980; 126:291–293 [View Article]
    [Google Scholar]
  35. Baek K, Yu J, Jeong J, Sim SJ, Bae S et al. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnol Bioeng 2018; 115:719–728 [View Article] [PubMed]
    [Google Scholar]
  36. Bernardet JF, Nakagawa YB, Holmes B. Subcommittee on the Taxonomy of Flavobacterium and Cytophaga-like Bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article]
    [Google Scholar]
  37. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  38. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article] [PubMed]
    [Google Scholar]
  39. Sasser M. MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  40. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005188
Loading
/content/journal/ijsem/10.1099/ijsem.0.005188
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error