1887
Preview this article:

There is no abstract available.

Keyword(s): candidatus , list and names
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005186
2022-01-31
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/72/1/ijsem005186.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005186&mimeType=html&fmt=ahah

References

  1. Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Candidatus list no.1. lists of names of prokaryotic candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956–4042 [View Article]
    [Google Scholar]
  2. Oren A, Garrity GM. Candidatus List No. 2. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2021; 71:004671 [View Article]
    [Google Scholar]
  3. Chuvochina M, Rinke C, Parks DH, Rappé MS, Tyson GW et al. The importance of designating type material for uncultured taxa. Syst Appl Microbiol 2019; 42:15–21 [View Article] [PubMed]
    [Google Scholar]
  4. Kadnikov VV, Mardanov AV, Beletsky AV, Banks D, Pimenov NV et al. A metagenomic window into the 2-km-deep terrestrial subsurface aquifer revealed multiple pathways of organic matter decomposition. FEMS Microbiol Ecol 2018; 94:fiy152 [View Article] [PubMed]
    [Google Scholar]
  5. Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ et al. An expanded genomic representation of the phylum Cyanobacteria. Genome Biol Evol 2014; 6:1031–1045 [View Article] [PubMed]
    [Google Scholar]
  6. Abdul Rahman N, Parks DH, Vanwonterghem I, Morrison M, Tyson GW et al. A phylogenomic analysis of the bacterial phylum Fibrobacteres. Front Microbiol 2015; 6:1469 [View Article] [PubMed]
    [Google Scholar]
  7. Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB et al. Genome-centric view of carbon processing in thawing permafrost. Nature 2018; 560:49–54 [View Article] [PubMed]
    [Google Scholar]
  8. von Dohlen CD, Spaulding U, Shields K, Havill NP, Rosa C et al. Diversity of proteobacterial endosymbionts in hemlock woolly adelgid (Adelges tsugae) (Hemiptera: Adelgidae) from its native and introduced range. Environ Microbiol 2013; 15:2043–2062 [View Article] [PubMed]
    [Google Scholar]
  9. Servín-Garcidueñas LE, Martínez-Romero E. Draft genome sequence of the Sulfolobales archaeon AZ1, obtained through metagenomic analysis of a Mexican hot spring. Genome Announc 2014; 2:e00164-14 [View Article] [PubMed]
    [Google Scholar]
  10. Kuechler SM, Renz P, Dettner K, Kehl S. Diversity of symbiotic organs and bacterial endosymbionts of lygaeoid bugs of the families Blissidae and Lygaeidae (Hemiptera: Heteroptera: Lygaeoidea). Appl Environ Microbiol 2012; 78:2648–2659 [View Article] [PubMed]
    [Google Scholar]
  11. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 2019; 176:649–662 [View Article] [PubMed]
    [Google Scholar]
  12. Wier AM, Dolan MF, Margulis L. Cortical symbionts and hydrogenosomes of the amitochondriate protist Staurojoenina assimilis. Symbiosis 2004; 36:153–168
    [Google Scholar]
  13. Sorokin DY, Muntyan MS, Toshchakov SV, Korzhenkov A, Kublanov IV. Phenotypic and genomic properties of a novel deep-lineage haloalkaliphilic member of the phylum Balneolaeota from soda lakes possessing Na+-translocating proteorhodopsin. Front Microbiol 2018; 9:2672 [View Article]
    [Google Scholar]
  14. Jungbluth SP, del Rio TG, Tringe SG, Stepanauskas R, Rappé MS. Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems. Peer J 2017; 5:e3134 [View Article]
    [Google Scholar]
  15. Lopera J, Miller IJ, McPhail KL, Kwan JC. Increased biosynthetic gene dosage in a genome-reduced defensive bacterial symbiont. mSystems 2017; 2:e00096-17 [View Article] [PubMed]
    [Google Scholar]
  16. Tianero MD, Balaich JN, Donia MS. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges. Nat Microbiol 2019; 4:1149–1159 [View Article] [PubMed]
    [Google Scholar]
  17. Boscaro V, Husnik F, Vannini C, Keeling PJ. Symbionts of the ciliate Euplotes: diversity, patterns and potential as models for bacteria-eukaryote endosymbioses. Proc R Soc Lond B Biol Sci 2019; 286:20190693 [View Article] [PubMed]
    [Google Scholar]
  18. Probst AJ, Banfield JF. Homologous recombination and transposon propagation shape the population structure of an organism from the deep subsurface with minimal metabolism. Genome Biol Evol 2018; 10:1115–1119 [View Article] [PubMed]
    [Google Scholar]
  19. Grünke S, Lichtschlag A, de Beer D, Felden J, Salman V et al. Mats of psychrophilic thiotrophic bacteria associated with cold seeps of the Barents Sea. Biogeosciences 2012; 9:2947–2960 [View Article]
    [Google Scholar]
  20. Mortzfeld BM, Urbanski S, Reitzel AM, Künzel S, Technau U et al. Response of bacterial colonization in Nematostella vectensis to development, environment and biogeography. Environ Microbiol 2016; 18:1764–1781 [View Article] [PubMed]
    [Google Scholar]
  21. Li K, Stanojević M, Stamenković G, Ilić B, Paunović M et al. Insight into diversity of bacteria belonging to the order Rickettsiales in 9 arthropods species collected in Serbia. Sci Rep 2019; 9:18680 [View Article] [PubMed]
    [Google Scholar]
  22. Arshad A, Dalcin Martins P, Frank J, Jetten MSM, Op den Camp HJM et al. Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio. Environ Microbiol 2017; 19:4965–4977 [View Article] [PubMed]
    [Google Scholar]
  23. Schrallhammer M, Castelli M, Petroni G. Phylogenetic relationships among endosymbiotic R-body producer: Bacteria providing their host the killer trait. Syst Appl Microbiol 2018; 41:213–220 [View Article] [PubMed]
    [Google Scholar]
  24. Couradeau E, Roush D, Guida BS, Garcia-Pichel F. Diversity and mineral substrate preference in endolithic microbial communities from marine intertidal outcrops (Isla de Mona, Puerto Rico). Biogeosciences 2017; 14:311–324 [View Article]
    [Google Scholar]
  25. Kolinko S, Wu Y-W, Tachea F, Denzel E, Hiras J et al. A bacterial pioneer produces cellulase complexes that persist through community succession. Nat Microbiol 2018; 3:99–107 [View Article] [PubMed]
    [Google Scholar]
  26. Thiel V, Wood JM, Olsen MT, Tank M, Klatt CG et al. The dark side of the Mushroom Spring microbial mat: life in the shadow of chlorophototrophs. I. Microbial diversity based on 16S rRNA gene amplicons and metagenomic sequencing. Front Microbiol 2016; 7:919 [View Article] [PubMed]
    [Google Scholar]
  27. Pagnier I, Valles C, Raoult D, La Scola B. Isolation of Vermamoeba vermiformis and associated bacteria in hospital water. Microb Pathog 2015; 80:14–20 [View Article]
    [Google Scholar]
  28. Bou Khalil JY, Benamar S, Baudoin J-P, Croce O, Blanc-Tailleur C et al. Developmental cycle and genome analysis of “Rubidus massi- liensis,” a new Vermamoeba vermiformis pathogen. Front Cell Infect Microbiol 2016; 6:31 [View Article]
    [Google Scholar]
  29. Salem H, Bauer E, Kirsch R, Berasategui A, Cripps M et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 2017; 171:1520–1531 [View Article] [PubMed]
    [Google Scholar]
  30. Toenshoff ER, Szabó G, Gruber D, Horn M. The pine bark Adelgid, Pineus strobi, contains two novel bacteriocyte-associated gammaproteobacterial symbionts. Appl Environ Microbiol 2014; 80:878–885 [View Article] [PubMed]
    [Google Scholar]
  31. Neuvonen M-M, Tamarit D, Näslund K, Liebig J, Feldhaar H et al. The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. Sci Rep 2016; 6:39197 [View Article] [PubMed]
    [Google Scholar]
  32. Fenollar F, Roux V, Stein A, Drancourt M, Raoult D. Analysis of 525 samples to determine the usefulness of PCR amplification and sequencing of the 16S rRNA gene for diagnosis of bone and joint infections. J Clin Microbiol 2006; 44:1018–1028 [View Article] [PubMed]
    [Google Scholar]
  33. Pagnier I, Raoult D, La Scola B. Isolation and identification of amoeba-resisting bacteria from water in human environment by using an Acanthamoeba polyphaga co-culture procedure. Environ Microbiol 2008; 10:1135–1144 [View Article] [PubMed]
    [Google Scholar]
  34. Gutiérrez R, Cohen C, Flatau R, Marcos-Hadad E, Garrido M et al. Untangling the knots: co-infection and diversity of Bartonella from wild gerbils and their associated fleas. Mol Ecol 2018; 27:4787–4807 [View Article] [PubMed]
    [Google Scholar]
  35. Gutiérrez R, Shalit T, Markus B, Yuan C, Nachum-Biala Y et al. Bartonella kosoyi sp. nov. and Bartonella krasnovii sp. nov., two novel species closely related to the zoonotic Bartonella elizabethae, isolated from black rats and wild desert rodent-fleas. Int J Syst Evol Microbiol 2020; 70:1656–1665 [View Article] [PubMed]
    [Google Scholar]
  36. Chomel BB, McMillan-Cole AC, Kasten RW, Stuckey MJ, Sato S et al. Candidatus Bartonella merieuxii, a potential new zoonotic Bartonella species in canids from Iraq. PLoS Negl Trop Dis 2012; 6:e1843 [View Article] [PubMed]
    [Google Scholar]
  37. Ehounoud CB, Yao KP, Dahmani M, Achi YL, Amanzougaghene N et al. Multiple pathogens including potential new species in tick vectors in Côte d’Ivoire. PLoS Negl Trop Dis 2016; 10:e0004367 [View Article] [PubMed]
    [Google Scholar]
  38. Qiu Y, Nakao R, Hang’ombe BM, Sato K, Kajihara M et al. Human borreliosis caused by a new world relapsing fever borrelia-like organism in the old world. Clin Infect Dis 2019; 69:107–112 [View Article] [PubMed]
    [Google Scholar]
  39. Araujo JC, Campos AC, Correa MM, Silva EC, Matté MH et al. Anammox bacteria enrichment and characterization from municipal activated sludge. Water Sci Technol 2011; 64:1428–1434 [View Article] [PubMed]
    [Google Scholar]
  40. Hausmann B, Pjevac P, Huemer M, Herbold CW, Pester M et al. Draft genome sequence of Desulfosporosinus sp. strain Sb-LF, isolated from an acidic peatland in Germany. Microbiol Resour Announc 2019; 8:e00428-19 [View Article]
    [Google Scholar]
  41. Bastos ADS, Mohammed OB, Bennett NC, Petevinos C, Alagaili AN. Molecular detection of novel Anaplasmataceae closely related to Anaplasma platys and Ehrlichia canis in the dromedary camel (Camelus dromedarius). Vet Microbiol 2015; 179:310–314 [View Article] [PubMed]
    [Google Scholar]
  42. Kawahara M, Rikihisa Y, Lin Q, Isogai E, Tahara K et al. Novel genetic variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale, and a novel Ehrlichia sp. in wild deer and ticks on two major islands in Japan. Appl Environ Microbiol 2006; 72:1102–1109 [View Article] [PubMed]
    [Google Scholar]
  43. Ueoka R, Uria AR, Reiter S, Mori T, Karbaum P et al. Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. Nat Chem Biol 2015; 11:705–712 [View Article]
    [Google Scholar]
  44. Nakashima Y, Egami Y, Kimura M, Wakimoto T, Abe I. Metagenomic analysis of the sponge discodermia reveals the production of the cyanobacterial natural product kasumigamide by “Entotheonella.”. PLoS One 2016; 11:e0164468 [View Article] [PubMed]
    [Google Scholar]
  45. Morris J, Shiller J, Mann R, Smith G, Yen A et al. Novel “Candidatus Liberibacter” species identified in the Australian eggplant psyllid, Acizzia solanicola. Microb Biotechnol 2017; 10:833–844 [View Article] [PubMed]
    [Google Scholar]
  46. Watanabe Y, Fujihara M, Obara H, Matsubara K, Yamauchi K et al. Novel hemoplasma species detected in free-ranging sika deer (Cervus nippon). J Vet Med Sci 2010; 72:1527–1530 [View Article] [PubMed]
    [Google Scholar]
  47. Harasawa R, Orusa R, Giangaspero M. Molecular evidence for hemotropic Mycoplasma infection in a Japanese badger (Meles meles anakuma) and a raccoon dog (Nyctereutes procyonoides viverrinus). J Wildl Dis 2014; 50:412–415 [View Article] [PubMed]
    [Google Scholar]
  48. Conord C, Despres L, Vallier A, Balmand S, Miquel C et al. Long-term evolutionary stability of bacterial endosymbiosis in Curculionoidea: additional evidence of symbiont replacement in the Dryophthoridae family. Mol Biol Evol 2008; 25:859–868 [View Article] [PubMed]
    [Google Scholar]
  49. Schwameis M, Auer J, Mitteregger D, Simonitsch-Klupp I, Ramharter M et al. Anaplasmataceae-specific PCR for diagnosis and therapeutic guidance for symptomatic neoehrlichiosis in immunocompetent host. Emerg Infect Dis 2016; 22:281–284 [View Article] [PubMed]
    [Google Scholar]
  50. Haaijer SCM, Ji K, van Niftrik L, Hoischen A, Speth D et al. A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water. Front Microbiol 2013; 4:60 [View Article] [PubMed]
    [Google Scholar]
  51. Kumar G, Mayrhofer R, Soliman H, El-Matbouli M. Novel Chlamydiales associated with epitheliocystis in grass carp (Ctenopharyngodon idella). Vet Rec 2013; 172:47 [View Article] [PubMed]
    [Google Scholar]
  52. von Dohlen CD, Spaulding U, Patch KB, Weglarz KM, Foottit RG et al. Dynamic acquisition and loss of dual-obligate symbionts in the plant-sap-feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea). Front Microbiol 2017; 8:1037 [View Article] [PubMed]
    [Google Scholar]
  53. Taylor AJ, Vongphayloth K, Vongsouvath M, Grandadam M, Brey PT et al. Large-scale survey for tickborne bacteria, Khammouan Province, Laos. Emerg Infect Dis 2016; 22:1635–1639 [View Article] [PubMed]
    [Google Scholar]
  54. Lim SJ, Davis BG, Gill DE, Walton J, Nachman E et al. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J 2019; 13:902–920 [View Article] [PubMed]
    [Google Scholar]
  55. He L-S, Zhang P-W, Huang J-M, Zhu F-C, Danchin A et al. The enigmatic genome of an obligate ancient Spiroplasma symbiont in a hadal holothurian. Appl Environ Microbiol 2018; 84:e01965–17 [View Article]
    [Google Scholar]
  56. Ragon M, Benzerara K, Moreira D, Tavera R, López-García P. 16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization. Front Microbiol 2014; 5:331 [View Article] [PubMed]
    [Google Scholar]
  57. Cabello-Yeves PJ, Haro-Moreno JM, Martin-Cuadrado A-B, Ghai R, Picazo A et al. Novel Synechococcus genomes reconstructed from freshwater reservoirs. Front Microbiol 2017; 8:1151 [View Article] [PubMed]
    [Google Scholar]
  58. Pende N, Wang J, Weber PM, Verheul J, Kuru E et al. Host-polarized cell growth in animal symbionts. Curr Biol 2018; 28:1039–1051 [View Article]
    [Google Scholar]
  59. Mølbak L, Klitgaard K, Jensen TK, Fossi M, Boye M. Identification of a novel, invasive, not-yet-cultivated Treponema sp. in the large intestine of pigs by PCR amplification of the 16S rRNA gene. J Clin Microbiol 2006; 44:4537–4540 [View Article] [PubMed]
    [Google Scholar]
  60. Salcher MM, Schaefle D, Kaspar M, Neuenschwander SM, Ghai R. Evolution in action: habitat-transition leads to genome-streamlining in Methylophilaceae. ISME J 2019; 13:2764–2777 [View Article]
    [Google Scholar]
  61. Sáez-Nieto JA, Medina-Pascual MJ, Carrasco G, Garrido N, Fernandez-Torres MA et al. Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New Microbes New Infect 2017; 19:19–27 [View Article]
    [Google Scholar]
  62. Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972–6016 [View Article] [PubMed]
    [Google Scholar]
  63. Rodriguez-R LM, Tsementzi D, Luo C, Konstantinidis KT. Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ Microbiol 2020; 22:3394–3412 [View Article] [PubMed]
    [Google Scholar]
  64. Yadav A, Vilcáez J, Farag IF, Johnson B, Mueller K et al. Candidatus Mcinerneyibacterium aminivorans gen. nov., sp. nov., the first representative of the candidate phylum Mcinerneyibacteriota phyl. nov. recovered from a high temperature, high salinity tertiary oil reservoir in north central Oklahoma, USA. Syst Appl Microbiol 2020; 43:126057 [View Article]
    [Google Scholar]
  65. La Cono V, Messina E, Rohde M, Arcadi E, Ciordia S et al. Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of different polysaccharides. Proc Natl Acad Sci U S A 2020; 117:20223–20234 [View Article] [PubMed]
    [Google Scholar]
  66. McLean JS, Bor B, Kerns KA, Liu Q, To TT et al. Acquisition and adaptation of ultra-small parasitic reduced genome bacteria to mammalian hosts. Cell Rep 2020; 32:107939 [View Article] [PubMed]
    [Google Scholar]
  67. Lemos LN, Medeiros JD, Dini-Andreote F, Fernandes GR, Varani AM et al. Genomic signatures and co-occurrence patterns of the ultra-small Saccharimonadia (phylum CPR/Patescibacteria) suggest a symbiotic lifestyle. Mol Ecol 2019; 28:4259–4271 [View Article] [PubMed]
    [Google Scholar]
  68. Liu Y-F, Chen J, Liu Z-L, Shou LB, Lin D-D et al. Anaerobic degradation of paraffins by thermophilic Actinobacteria under methanogenic conditions. Environ Sci Technol 2020; 54:10610–10620 [View Article] [PubMed]
    [Google Scholar]
  69. Dombrowski N, Williams TA, Sun J, Woodcroft BJ, Lee J-H et al. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Nat Commun 2020; 11:3939 [View Article] [PubMed]
    [Google Scholar]
  70. Hildebrand F, Pallen MJ, Bork P. Towards standardisation of naming novel prokaryotic taxa in the age of high-throughput microbiology. Gut 2020; 69:1358–1359 [View Article] [PubMed]
    [Google Scholar]
  71. Kadnikov VV, Savvichev AS, Mardanov AV, Beletsky AV, Chupakov AV et al. Metabolic diversity and evolutionary history of the archaeal phylum “Candidatus Micrarchaeota” uncovered from a freshwater lake metagenome. Appl Environ Microbiol 2020; 86:e02199-20 [View Article]
    [Google Scholar]
  72. Tschoeke DA, Coutinho FH, Leomil L, Cavalcanti G, Silva BS et al. New bacterial and archaeal lineages discovered in organic rich sediments of a large tropical Bay. Mar Genomics 2020; 54:100789 [View Article] [PubMed]
    [Google Scholar]
  73. Merino N, Kawai M, Boyd ES, Colman DR, McGlynn SE et al. Single-cell genomics of novel Actinobacteria with the Wood-Ljungdahl pathway discovered in a serpentinizing system. Front Microbiol 2020; 11:1031 [View Article] [PubMed]
    [Google Scholar]
  74. Podell S, Blanton JM, Oliver A, Schorn MA, Agarwal V et al. A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Microbiome 2020; 8:97 [View Article] [PubMed]
    [Google Scholar]
  75. Kadnikov VV, Mardanov AV, Beletsky AV, Karnachuk OV, Ravin NV. Microbial life in the deep subsurface aquifer illuminated by metagenomics. Front Microbiol 2020; 11:572252 [View Article] [PubMed]
    [Google Scholar]
  76. Luo Z-H, Li Q, Lai Y, Chen H, Liao B et al. Diversity and genomic characterization of a novel Parvarchaeota family in acid mine drainage sediments. Front Microbiol 2020; 11:612257 [View Article] [PubMed]
    [Google Scholar]
  77. Mei R, Nobu MK, Narihiro T, Liu W-T. Metagenomic and metatranscriptomic analyses revealed uncultured bacteroidales populations as the dominant proteolytic amino acid degraders in anaerobic digesters. Front Microbiol 2020; 11:593006 [View Article] [PubMed]
    [Google Scholar]
  78. Kadnikov VV, Mardanov AV, Beletsky AV, Karnachuk OV, Ravin NV. Complete genome of a member of a new bacterial lineage in the Microgenomates group reveals an unusual nucleotide composition disparity between two strands of DNA and limited metabolic potential. Microorganisms 2020; 8:320 [View Article]
    [Google Scholar]
  79. Assié A, Leisch N, Meier DV, Gruber-Vodicka H, Tegetmeyer HE et al. Horizontal acquisition of a patchwork Calvin cycle by symbiotic and free-living Campylobacterota (formerly Epsilonproteobacteria). ISME J 2020; 14:104–122 [View Article] [PubMed]
    [Google Scholar]
  80. Grieb A, Francis TB, Krüger K, Orellana LH, Amann R et al. Candidatus Abditibacter, a novel genus within the Cryomorphaceae, thriving in the North Sea. Syst Appl Microbiol 2020; 43:126088 [View Article] [PubMed]
    [Google Scholar]
  81. Ward LM, Fischer WW, McGlynn SE. Candidatus Anthektikosiphon siderophilum OHK22, a new member of the Chloroflexi family Herpetosiphonaceae from Oku-okuhachikurou Onsen. Microbes Environ 2020; 35: [View Article] [PubMed]
    [Google Scholar]
  82. Zhu F-C, Lian C-A, He L-S. Genomic characterization of a novel Tenericutes bacterium from deep-sea holothurian intestine. Microorganisms 2020; 8:1874 [View Article]
    [Google Scholar]
  83. Spieck E, Spohn M, Wendt K, Bock E, Shively J et al. Extremophilic nitrite-oxidizing Chloroflexi from Yellowstone hot springs. ISME J 2020; 14:364–379 [View Article] [PubMed]
    [Google Scholar]
  84. Russell SL, Pepper-Tunick E, Svedberg J, Byrne A, Ruelas Castillo J et al. Horizontal transmission and recombination maintain forever young bacterial symbiont genomes. PLoS Genet 2020; 16:e1008935 [View Article]
    [Google Scholar]
  85. Doud DFR, Bowers RM, Schulz F, De Raad M, Deng K et al. Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. ISME J 2020; 14:659–675 [View Article] [PubMed]
    [Google Scholar]
  86. Grettenberger CL, Sumner DY, Wall K, Brown CT, Eisen JA et al. A phylogenetically novel cyanobacterium most closely related to Gloeobacter. ISME J 2020; 14:2142–2152 [View Article] [PubMed]
    [Google Scholar]
  87. Hahn CJ, Laso-Pérez R, Vulcano F, Vaziourakis K-M, Stokke R et al. Candidatus Ethanoperedens,” a thermophilic genus of archaea mediating the anaerobic oxidation of ethane. mBio 2020; 11:e00600-20 [View Article] [PubMed]
    [Google Scholar]
  88. Bethencourt L, Bochet O, Farasin J, Aquilina L, Borgne TL et al. Genome reconstruction reveals distinct assemblages of Gallionellaceae in surface and subsurface redox transition zones. FEMS Microbiol Ecol 2020; 96:fiaa036 [View Article] [PubMed]
    [Google Scholar]
  89. George EE, Husnik F, Tashyreva D, Prokopchuk G, Horák A et al. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr Biol 2020; 30:925–933 [View Article] [PubMed]
    [Google Scholar]
  90. Holm JB, France MT, Ma B, McComb E, Robinson CK et al. Comparative metagenome-assembled genome analysis of “Candidatus Lachnocurva vaginae”, formerly known as Bacterial Vaginosis-Associated Bacterium−1 (BVAB1). Front Cell Infect Microbiol 2020; 10:117 [View Article]
    [Google Scholar]
  91. Saghaï A, Zivanovic Y, Moreira D, Tavera R, López-García P. A novel microbialite-associated phototrophic Chloroflexi lineage exhibiting a quasi-clonal pattern along depth. Genome Biol Evol 2020; 12:1207–1216 [View Article] [PubMed]
    [Google Scholar]
  92. Yu H, Leadbetter JR. Bacterial chemolithoautotrophy via manganese oxidation. Nature 2020; 583:453–458 [View Article] [PubMed]
    [Google Scholar]
  93. Liu Y-F, Chen J, Zaramela LS, Wang L-Y, Mbadinga SM et al. Genomic and transcriptomic evidence supports methane metabolism in Archaeoglobi. mSystems 2020; 5:e00651-19 [View Article]
    [Google Scholar]
  94. Serra V, Gammuto L, Nitla V, Castelli M, Lanzoni O et al. Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra-reduced endosymbiont “Candidatus Pinguicoccus supinus” sp. nov. Sci Rep 2020; 10:20311 [View Article] [PubMed]
    [Google Scholar]
  95. Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 2020; 577:519–525 [View Article] [PubMed]
    [Google Scholar]
  96. Hao L, Michaelsen TY, Singleton CM, Dottorini G, Kirkegaard RH et al. Novel syntrophic bacteria in full-scale anaerobic digesters revealed by genome-centric metatranscriptomics. ISME J 2020; 14:906–918 [View Article] [PubMed]
    [Google Scholar]
  97. Kadnikov VV, Mardanov AV, Beletsky AV, Karnachuk OV, Ravin NV. Genome analysis of a member of the uncultured phylum Riflebacteria revealed pathways of organotrophic metabolism and dissimilatory iron reduction. Microbiology 2020; 89:328–336 [View Article]
    [Google Scholar]
  98. Martinson VG, Gawryluk RMR, Gowen BE, Curtis CI, Jaenike J et al. Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proc Natl Acad Sci U S A 2020; 117:31979–31986 [View Article] [PubMed]
    [Google Scholar]
  99. Scarborough MJ, Myers KS, Donohue TJ, Noguera DR. Medium-chain fatty acid synthesis by “Candidatus Weimeria bifida” gen. nov., sp. nov., and “Candidatus Pseudoramibacter fermentans” sp. nov. Appl Environ Microbiol 2020; 86:e02242-19 [View Article]
    [Google Scholar]
  100. Sánchez-Reyes A, Bretón-Deval L, Mangelson H, Sanchez-Flores A. Draft genome sequence of “Candidatus Afipia apatlaquensiss” sp. nov., ibt-c3, a potential strain for decolorization of textile dyes. BMC Res Notes 2020; 13:265 [View Article]
    [Google Scholar]
  101. Deeg CM, Le TT, Zimmer MM, Suttle CA. From the inside out: an epibiotic Bdellovibrio predator with an expanded genomic complement. J Bacteriol 2020; 202:e00565-19 [View Article] [PubMed]
    [Google Scholar]
  102. Muñoz-Leal S, Ramirez DG, Luz HR, Faccini JLH, Labruna MB. Candidatus Borrelia ibitipoquensis,” a Borrelia valaisiana-related genospecies characterized from Ixodes paranaensis in Brazil. Microb Ecol 2020; 80:682–689 [View Article] [PubMed]
    [Google Scholar]
  103. Binetruy F, Garnier S, Boulanger N, Talagrand-Reboul É, Loire E et al. A novel Borrelia species, intermediate between Lyme disease and relapsing fever groups, in neotropical passerine-associated ticks. Sci Rep 2020; 10:10596 [View Article] [PubMed]
    [Google Scholar]
  104. Bian X, Garber JM, Cooper KK, Huynh S, Jones J et al. Campylobacter abundance in breastfed infants and identification of a new species in the Global Enterics Multicenter Study. mSphere 2020; 5:e00735-19 [View Article]
    [Google Scholar]
  105. Laroucau K, Ortega N, Vorimore F, Aaziz R, Mitura A et al. Detection of a novel Chlamydia species in captive spur-thighed tortoises (Testudo graeca) in southeastern Spain and proposal of Candidatus Chlamydia testudinis. Syst Appl Microbiol 2020; 43:126071 [View Article] [PubMed]
    [Google Scholar]
  106. Tsuji JM, Tran N, Schiff SL, Venkiteswaran JJ, Molot LA et al. Anoxygenic photosynthesis and iron-sulfur metabolic potential of Chlorobia populations from seasonally anoxic Boreal Shield lakes. ISME J 2020; 14:2732–2747 [View Article] [PubMed]
    [Google Scholar]
  107. Elliman JR, Owens L. Confirmation that candidatus Coxiella cheraxi from redclaw crayfish (Cherax quadricarinatus) is a close relative of Coxiella burnetii, the agent of Q-fever. Lett Appl Microbiol 2020; 71:320–326 [View Article] [PubMed]
    [Google Scholar]
  108. Tan CK, Owens L. Infectivity, transmission and 16S rRNA sequencing of a rickettsia, Coxiella cheraxi sp. nov., from the freshwater crayfish Cherax quadricarinatus. Dis Aquat Organ 2000; 41:115–122 [View Article] [PubMed]
    [Google Scholar]
  109. Jiang L, Liu X, Dong C, Huang Z, Cambon-Bonavita M-A et al. Candidatus Desulfobulbus rimicarensis,” an uncultivated deltaproteobacterial epibiont from the deep-sea hydrothermal vent shrimp Rimicaris exoculata. Appl Environ Microbiol 2020; 86:e02549-19 [View Article] [PubMed]
    [Google Scholar]
  110. Alves JI, Salvador AF, Castro AR, Zheng Y, Nijsse B et al. Long-chain fatty acid degradation by Desulfomonile species and proposal of “Candidatus Desulfomonile palmatatoxidans”. Front Microbiol 2020; 11:539604 [View Article] [PubMed]
    [Google Scholar]
  111. Takeuchi M, Kuwahara H, Murakami T, Takahashi K, Kajitani R et al. Parallel reductive genome evolution in Desulfovibrio ectosymbionts independently acquired by Trichonympha protists in the termite gut. ISME J 2020; 14:2288–2301 [View Article] [PubMed]
    [Google Scholar]
  112. Manzano-Marı N A, Coeur d’acier A, Clamens A-L, Orvain C, Cruaud C et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J 2020; 14:259–273 [View Article] [PubMed]
    [Google Scholar]
  113. Pozzi ACM, Herrera-Belaroussi A, Schwob G, Bautista-Guerrero HH, Bethencourt L et al. Proposal of “Candidatus Frankia alpina”, the uncultured symbiont of Alnus alnobetula and A. incana that forms spore-containing nitrogen-fixing root nodules. Int J Syst Evol Microbiol 2020; 70:5453–5459 [View Article] [PubMed]
    [Google Scholar]
  114. Herrera-Belaroussi A, Normand P, Pawlowski K, Fernandez MP, Wibberg D et al. Candidatus Frankia nodulisporulans sp. nov., an Alnus glutinosa-infective Frankia species unable to grow in pure culture and able to sporulate in-planta. Syst Appl Microbiol 2020; 43:126134 [View Article] [PubMed]
    [Google Scholar]
  115. Beliavskaia AY, Predeus AV, Garushyants SK, Logacheva MD, Gong J et al. New intranuclear symbiotic bacteria from macronucleus of Paramecium putrinum-"Candidatus Gortzia yakutica". Diversity (Basel) 2020; 12:198 [View Article]
    [Google Scholar]
  116. Ryazanova TV, Eliseikina MG, Kukhlevsky AD. First record of new rickettsia-like organism in the blue king crab Paralithodes platypus from the Sea of Okhotsk: Distribution, morphological evidence and genetic analysis. J Invertebr Pathol 2020; 170:107325 [View Article] [PubMed]
    [Google Scholar]
  117. Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J 2020; 14:1030–1041 [View Article] [PubMed]
    [Google Scholar]
  118. Lian C-A, Yan G-Y, Huang J-M, Danchin A, Wang Y et al. Genomic characterization of a novel gut symbiont from the hadal snailfish. Front Microbiol 2019; 10:2978 [View Article] [PubMed]
    [Google Scholar]
  119. Spieck E, Sass K, Keuter S, Hirschmann S, Spohn M et al. Defining culture conditions for the hidden nitrite-oxidizing bacterium Nitrolancea. Front Microbiol 2020; 11:1522 [View Article] [PubMed]
    [Google Scholar]
  120. Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J 2017; 11:1142–1157 [View Article] [PubMed]
    [Google Scholar]
  121. Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH et al. Correction: Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J 2020; 14:2366 [View Article] [PubMed]
    [Google Scholar]
  122. Abarca K, Martínez-Valdebenito C, Angulo J, Jiang J, Farris CM et al. Molecular description of a novel Orientia species causing scrub typhus in Chile. Emerg Infect Dis 2020; 26:2148–2156 [View Article] [PubMed]
    [Google Scholar]
  123. Izzard L, Fuller A, Blacksell SD, Paris DH, Richards AL et al. Isolation of a novel Orientia species (O. chuto sp. nov.) from a patient infected in Dubai. J Clin Microbiol 2010; 48:4404–4409 [View Article]
    [Google Scholar]
  124. Gaisin VA, Grouzdev DS, Krutkina MS, Ashikhmin AA, Sinetova MA et al. Candidatus Oscillochloris kuznetsovii” a novel mesophilic filamentous anoxygenic phototrophic Chloroflexales bacterium from Arctic coastal environments. FEMS Microbiol Lett 2020; 367:fnaa158 [View Article] [PubMed]
    [Google Scholar]
  125. Morris RM, Cain KR, Hvorecny KL, Kollman JM. Lysogenic host-virus interactions in SAR11 marine bacteria. Nat Microbiol 2020; 5:1011–1015 [View Article] [PubMed]
    [Google Scholar]
  126. Buysse M, Duron O. Two novel Rickettsia species of soft ticks in North Africa: “Candidatus Rickettsia africaseptentrionalis” and “Candidatus Rickettsia mauretanica.”. Ticks Tick Borne Dis 2020; 11:101376 [View Article] [PubMed]
    [Google Scholar]
  127. Wang H-L, Lei T, Wang X-W, Maruthi MN, Zhu D-T et al. A newly recorded Rickettsia of the Torix group is a recent intruder and an endosymbiont in the whitefly Bemisia tabaci. Environ Microbiol 2020; 22:1207–1221 [View Article] [PubMed]
    [Google Scholar]
  128. Schötta A-M, Wijnveld M, Höss D, Stanek G, Stockinger H et al. Identification and characterization of “Candidatus Rickettsia thierseensis”, a novel spotted fever group rickettsia species detected in Austria. Microorganisms 2020; 8:E1670 [View Article]
    [Google Scholar]
  129. Li H, Li X-M, Du J, Zhang X-A, Cui N et al. Candidatus Rickettsia xinyangensis as cause of spotted fever group rickettsiosis, Xinyang, China, 2015. Emerg Infect Dis 2020; 26:985–988 [View Article]
    [Google Scholar]
  130. Zhao R, Mogollón JM, Abby SS, Schleper C, Biddle JF et al. Geochemical transition zone powering microbial growth in subsurface sediments. Proc Natl Acad Sci U S A 2020; 117:32617–32626 [View Article] [PubMed]
    [Google Scholar]
  131. Mardanov AV, Gruzdev EV, Smolyakov DD, Rudenko TS, Beletsky AV et al. Genomic and metabolic insights into two novel Thiothrix species from enhanced biological phosphorus removal systems. Microorganisms 2020; 8:2030 [View Article]
    [Google Scholar]
  132. Alejandre-Colomo C, Viver T, Urdiain M, Francis B, Harder J et al. Taxonomic study of nine new Winogradskyella species occurring in the shallow waters of Helgoland Roads, North Sea. Proposal of Winogradskyella schleiferi sp. nov., Winogradskyella costae sp. nov., Winogradskyella helgolandensis sp. nov., Winogradskyella vidalii sp. nov., Winogradskyella forsetii sp. nov., Winogradskyella ludwigii sp. nov., Winogradskyella ursingii sp. nov., Winogradskyella wichelsiae sp. nov., and Candidatus “Winogradskyella atlantica” sp. nov. Syst Appl Microbiol 2020; 43:126128 [View Article]
    [Google Scholar]
  133. Calchi AC, Vultão JG, Alves MH, Yogui DR, Desbiez ALJ et al. Multi-locus sequencing reveals a novel Bartonella in mammals from the Superorder Xenarthra. Transbound Emerg Dis 2020; 67:2020–2033 [View Article]
    [Google Scholar]
  134. Mehrshad M, Salcher MM, Okazaki Y, Nakano S-I, Šimek K et al. Hidden in plain sight-highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome 2018; 6:176 [View Article] [PubMed]
    [Google Scholar]
  135. Qiu Y, Kajihara M, Nakao R, Mulenga E, Harima H et al. Isolation of Candidatus Bartonella rousetti and other bat-associated Bartonellae from bats and their flies in Zambia. Pathogens 2020; 9:E469 [View Article]
    [Google Scholar]
  136. Bai Y, Osinubi MOV, Osikowicz L, McKee C, Vora NM et al. Human exposure to novel Bartonella species from contact with fruit bats. Emerg Infect Dis 2018; 24:2317–2323 [View Article] [PubMed]
    [Google Scholar]
  137. Yang Y, Sanford R, Yan J, Chen G, Cápiro NL et al. Roles of organohalide-respiring Dehalococcoidia in carbon cycling. mSystems 2020; 5:e00757-19 [View Article]
    [Google Scholar]
  138. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA et al. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 2013; 63:625–635 [View Article]
    [Google Scholar]
  139. Khatri K, Mohite JA, Pandit PS, Bahulikar R, Rahalkar MC. Description of “Ca. Methylobacter oryzae” KRF1, a novel species from the environmentally important Methylobacter clade 2. Antonie van Leeuwenhoek 2020; 113:729–735 [View Article] [PubMed]
    [Google Scholar]
  140. Teymournejad O, Lin M, Bekebrede H, Kamr A, Toribio RE et al. Isolation and molecular analysis of a novel Neorickettsia species that causes Potomac horse fever. mBio 2020; 11:e03429-19 [View Article]
    [Google Scholar]
  141. Verce M, De Vuyst L, Weckx S. Shotgun metagenomics of a water kefir fermentation ecosystem reveals a novel Oenococcus species. Front Microbiol 2019; 10:479 [View Article] [PubMed]
    [Google Scholar]
  142. Verce M, De Vuyst L, Weckx S. The metagenome-assembled genome of Candidatus Oenococcus aquikefiri from water kefir represents the species Oenococcus sicerae. Food Microbiol 2020; 88:103402 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005186
Loading
/content/journal/ijsem/10.1099/ijsem.0.005186
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error