1887

Abstract

The polyphasic taxonomic study of a novel endophytic actinobacterium strain (CA2R105) was carried out. The strain formed fragmented substrate mycelium and showed chemotaxonomic properties typical of members of the genus i.e. the presence of mycolic acid and MK-8 (H) in its cells. Strain CA2R105 exhibited the highest 16S rRNA gene sequence similarity to NBRC 101359 (99.2%). The genome-based taxonomic analysis revealed low average nucleotide identity- and digital DNA–DNA hybridization values (<93.7, and <65.2%, respectively) to its closest relative. Moreover, many different phenotypic characteristics were observed between strain CA2R105 and all related -type strains. This taxonomic evidence suggested that strain CA2R105 should be judged as representing a novel species of the genus and the name, sp. nov. is proposed. The type strain is CA2R105 (=TBRC 11247=NBRC 114292).

Funding
This study was supported by the:
  • Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang (Award RA/TA-2562-M-021)
    • Principle Award Recipient: AchararakNammali
  • King Mongkut’s Institute of Technology Ladkrabang Research Fund (Award KREF046301)
    • Principle Award Recipient: ChittiThawai
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005180
2022-01-17
2024-04-26
Loading full text...

Full text loading...

References

  1. Goodfellow M, Lechevalier MP. Genus Nocardia Trevisan 1889, 9AL . In Williams ST, Sharpe ME, Holt JG. eds Bergey’s Manual of Systematic Bacteriology vol 4 Baltimore, MD: Williams and Wilkins; 1989 pp 2348–2361
    [Google Scholar]
  2. Li S, Ming H, Duan Y-Y, Huang J-R, Zhao Z-L et al. Nocardia tengchongensis sp. nov., isolated from a soil sample. Antonie van Leeuwenhoek 2017; 110:1149–1155 [View Article] [PubMed]
    [Google Scholar]
  3. Seçkin H, Önalan S. Phylogenetic diversity of Nocardia sp. obtained from different water environments. Res J Biol Sci 2020; 13:37–44
    [Google Scholar]
  4. Jose PA, Jha B. Intertidal marine sediment harbours Actinobacteria with promising bioactive and biosynthetic potential. Sci Rep 2017; 7:10041 [View Article] [PubMed]
    [Google Scholar]
  5. Hemmersbach-Miller M, Catania J, Saullo JL. Updates on Nocardia skin and soft tissue infections in solid organ transplantation. Curr Infect Dis Rep 2019; 21:27 [View Article] [PubMed]
    [Google Scholar]
  6. Ghodhbane-Gtari F, Nouioui I, Salem K, Ktari A, Montero-Calasanz M del C et al. Nocardia casuarinae sp. nov., an actinobacterial endophyte isolated from root nodules of Casuarina glauca . Antonie van Leeuwenhoek 2014; 105:1099–1106 [View Article] [PubMed]
    [Google Scholar]
  7. Xing K, Qin S, Fei S-M, Lin Q, Bian G-K et al. Nocardia endophytica sp. nov., an endophytic actinomycete isolated from the oil-seed plant Jatropha curcas L. Int J Syst Evol Microbiol 2011; 61:1854–1858 [View Article] [PubMed]
    [Google Scholar]
  8. Kaewkla O, Franco CMM. Nocardia callitridis sp. nov., an endophytic actinobacterium isolated from a surface-sterilized root of an Australian native pine tree. Int J Syst Evol Microbiol 2010; 60:1532–1536 [View Article] [PubMed]
    [Google Scholar]
  9. Tanvir R, Sajid I, Hasnain S, Kulik A, Grond S. Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation. Microbiol Res 2016; 185:22–35 [View Article] [PubMed]
    [Google Scholar]
  10. Zhao G-Z, Li J, Zhu W-Y, Klenk H-P, Xu L-H et al. Nocardia artemisiae sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Artemisia annua L. Int J Syst Evol Microbiol 2011; 61:2933–2937 [View Article] [PubMed]
    [Google Scholar]
  11. Nimnoi P, Pongsilp N, Lumyong S. Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production. World J Microbiol Biotechnol 2009; 26:193–203 [View Article]
    [Google Scholar]
  12. Purushotham N, Jones E, Monk J, Ridgway H. Community structure of endophytic actinobacteria in a New Zealand native medicinal plant Pseudowintera colorata (Horopito) and their influence on plant growth. Microb Ecol 2018; 76:729–740 [View Article]
    [Google Scholar]
  13. Nammali A, Intaraudom C, Pittayakhajonwut P, Suriyachadkun C, Tadtong S et al. Streptomyces coffeae sp. nov., an endophytic actinomycete isolated from the root of Coffea arabica (L.). Int J Syst Evol Microbiol 2021; 71:004834 [View Article]
    [Google Scholar]
  14. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  15. Itoh T, Kudo T, Parenti F, Seino A. Amended description of the genus Kineosporia, based on chemotaxonomic and morphological studies. Int J Syst Bacteriol 1989; 39:168–173 [View Article]
    [Google Scholar]
  16. Chapin KC, Murray PR. Stains. In Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH. eds Manual of Clinical Microbiology Washington, DC: American Society for Microbiology; 1999 p 1678
    [Google Scholar]
  17. Waksman SA. The Actinomycetes, vol. 2, Classification, Identification and Description of Genera and Species Baltimore, MD: Williams and Wilkins; 1961
    [Google Scholar]
  18. Kelly KL. Inter-Society Color Council – National Bureau of Standard Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  19. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  20. Williams ST, Cross T. Actinomycetes. In Booth C. eds Methods in Microbiology vol. 4 London: Academic Press; 1971 pp 295
    [Google Scholar]
  21. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  22. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article]
    [Google Scholar]
  23. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  24. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  26. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  27. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acidsbacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, NJ: Microbial ID, Inc; 1990
    [Google Scholar]
  29. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  30. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatog A 1980; 188:221–233 [View Article]
    [Google Scholar]
  31. Tamaoka J. Determination of DNA Base Composition. In Goodfellow M, O’Donnell AG. eds Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp 463–470
    [Google Scholar]
  32. Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T. Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 1999; 49 Pt 4:1761–1767 [View Article] [PubMed]
    [Google Scholar]
  33. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  34. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  35. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  36. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 1971; 20:406 [View Article]
    [Google Scholar]
  37. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  38. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  39. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  40. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  41. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  42. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Bio 2012; 19:455–477 [View Article]
    [Google Scholar]
  43. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008; 9:9–75 [View Article]
    [Google Scholar]
  44. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  45. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  46. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–73 [View Article] [PubMed]
    [Google Scholar]
  47. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  48. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  49. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ 2016; 4:e1900v1
    [Google Scholar]
  50. Tamaoka J. Determination of DNA base comBase Composition. In Goodfellow M, O’Donnell AG. eds Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp 463–470
    [Google Scholar]
  51. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  52. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  53. Goodfellow M, Maldonado LA. Genus I. Nocardia Trevisan 1889. In Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I. eds Bergey’s Manual of Systematic Bacteriology, the Actinobacteria, 2nd edn. vol. 5, part B New York: Springer; 2012 pp 376–419
    [Google Scholar]
  54. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  55. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  56. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article] [PubMed]
    [Google Scholar]
  57. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005180
Loading
/content/journal/ijsem/10.1099/ijsem.0.005180
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error