1887

Abstract

A Gram-positive, non-spore-forming actinobacterium (IMT-300) was isolated from soil amended with humic acid in Malvern, AL, USA. This soil has been used for 50+years for the cultivation of earthworms for use as fish bait. Based on 16S rRNA gene sequence similarity studies, strain IMT-300 was shown to belong to the genus and was closely related to the type strain of ’ L1 (97.8%). Similarity to all other type strains of species was lower than 97.2 %. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the IMT-300 genome assembly and those of the closest relative type strain were 81.4 and 23.3 % (), respectively. The peptidoglycan of strain IMT-300 contained -2,4-diaminobutyric acid as the diagnostic diamino acid. In addition, glycine, - and -alanine and -glutamic acid were found. The peptidoglycan type represents a variant of B2δ (B11). The major quinones were menaquinones MK-10 and MK-11. The polar lipid profile consisted of the major lipids diphosphatidylglycerol, phosphatidylglycerol and moderate to minor amounts of two unidentified phospholipids, two unidentified glycolipids and an unidentified aminophospholipid. The polyamine pattern contained major amounts of spermidine and spermine. Strain IMT-300 contained the major fatty acids C anteiso, C iso and C anteiso, like other members of the genus . The results of ANI and dDDH analyses and physiological and biochemical tests allowed a genotypic and phenotypic differentiation of strain IMT-300 from the most closely related species. Strain IMT-300 represents a novel species, for which we propose the name sp. nov., with the type strain IMT-300 (CIP 111803=DSM 110505=CCM 9020=LMG 31600).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005156
2021-12-14
2022-01-29
Loading full text...

Full text loading...

References

  1. Takeuchi M, Weiss N, Schumann P, Yokota A. Leucobacter komagatae gen. nov., sp. nov., a new aerobic Gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:967–971 [View Article] [PubMed]
    [Google Scholar]
  2. Kim H-J, Lee S-S. Leucobacter kyeonggiensis sp. nov., a new species isolated from dye waste water. J Microbiol 2011; 49:1044–1049 [View Article] [PubMed]
    [Google Scholar]
  3. Morais PV, Paulo C, Francisco R, Branco R, Paula Chung A et al. Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 2006; 29:414–421 [View Article] [PubMed]
    [Google Scholar]
  4. Weon H-Y, Anandham R, Tamura T, Hamada M, Kim S-J et al. Leucobacter denitrificans sp. nov., isolated from cow dung. J Microbiol 2012; 50:161–165 [View Article] [PubMed]
    [Google Scholar]
  5. Martin E, Lodders N, Jäckel U, Schumann P, Kämpfer P. Leucobacter aerolatus sp. nov., from the air of a duck barn. Int J Syst Evol Microbiol 2010; 60:2838–2842 [View Article] [PubMed]
    [Google Scholar]
  6. Ue H. Leucobacter exalbidus sp. nov., an actinobacterium isolated from a mixed culture from compost. J Gen Appl Microbiol 2011; 57:27–33 [View Article] [PubMed]
    [Google Scholar]
  7. Her J, Lee SS. Leucobacter humi sp. nov., isolated from forest soil. Curr Microbiol 2015; 71:235–242 [View Article] [PubMed]
    [Google Scholar]
  8. Sturm G, Jacobs J, Spröer C, Schumann P, Gescher J. Leucobacter chromiiresistens sp. nov., a chromate-resistant strain. Int J Syst Evol Microbiol 2011; 61:956–960 [View Article] [PubMed]
    [Google Scholar]
  9. Fang W, Li X, Tan XM, Wang LF, Piao CG et al. Leucobacter populi sp. nov. isolated from a symptomatic bark of Populus × Euramericana canker. Int J Syst Evol Microbiol 2016; 66:2254–2258 [View Article] [PubMed]
    [Google Scholar]
  10. Li Y, Fang W, Xie SJ, Yang X, Wang LF. Leucobacter corticis sp. nov., isolated from symptomatic bark of Populus × Euramericana canker. Int J Syst Evol Microbiol 2017; 67:2248–2252 [View Article] [PubMed]
    [Google Scholar]
  11. Clark LC, Hodgkin J. Leucobacter musarum subsp. musarum sp. nov., subsp. nov., Leucobacter musarum subsp. japonicus subsp. nov., and Leucobacter celer subsp. astrifaciens subsp. nov., three nematopathogenic bacteria isolated from Caenorhabditis, with an emended description of Leucobacter celer. Int J Syst Evol Microbiol 2015; 65:3977–3984 [View Article] [PubMed]
    [Google Scholar]
  12. Lee JH, Lee SS. Leucobacter margaritiformis sp. nov., isolated from bamboo extract. Curr Microbiol 2012; 64:441–448 [View Article]
    [Google Scholar]
  13. Lai W-A, Lin S-Y, Hameed A, Hsu Y-H, Liu Y-C et al. Leucobacter zeae sp. nov., isolated from the rhizosphere of maize (Zea mays L.). Int J Syst Evol Microbiol 2015; 65:4734–4742 [View Article] [PubMed]
    [Google Scholar]
  14. Behrendt U, Ulrich A, Schumann P. Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 2008; 58:2574–2578 [View Article] [PubMed]
    [Google Scholar]
  15. Shin NR, Kim MS, Jung MJ, Roh SW, Nam YD et al. Leucobacter celer sp. nov., isolated from Korean fermented seafood. Int J Syst Evol Microbiol 2011; 61:2353–2357 [View Article] [PubMed]
    [Google Scholar]
  16. Yun J-H, Roh SW, Kim M-S, Jung M-J, Park E-J et al. Leucobacter salsicius sp. nov., from a salt-fermented food. Int J Syst Evol Microbiol 2011; 61:502–506 [View Article] [PubMed]
    [Google Scholar]
  17. Zhu D, Zhang P, Li P, Wu J, Xie C et al. Description of Leucobacter holotrichiae sp. nov., isolated from the gut of Holotrichia oblita larvae. Int J Syst Evol Microbiol 2016; 66:1857–1861 [View Article] [PubMed]
    [Google Scholar]
  18. Hyun DW, Sung H, Kim PS, Yun JH, Bae JW. Leucobacter coleopterorum sp. nov., Leucobacter insecticola sp. nov., and Leucobacter viscericola sp. nov., isolated from the intestine of the diving beetles, Cybister brevis and Cybister lewisianus, and emended description of the genus Leucobacter. J Microbiol 2021; 59:360–368 [View Article] [PubMed]
    [Google Scholar]
  19. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  20. Coloqhoun JA. Discovery of Deep-Sea Actinomycetes. PhD Dissertation. Research School of Biosciences. University of Kent, Canterbury; 1997
  21. Schauss T, Busse H-J, Golke J, Kämpfer P, Glaeser SP. Empedobacter stercoris sp. nov., isolated from an input sample of a biogas plant. Int J Syst Evol Microbiol 2015; 65:3746–3753 [View Article]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  24. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article] [PubMed]
    [Google Scholar]
  25. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article] [PubMed]
    [Google Scholar]
  26. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  27. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  28. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. eds Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  29. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author Seattle: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
  30. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978; 75:4801–4805 [View Article] [PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  32. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114. [View Article] [PubMed]
    [Google Scholar]
  33. Criscuolo A. A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. RIO 2019; 5:e36178 [View Article]
    [Google Scholar]
  34. Criscuolo A. On the transformation of MinHash-based uncorrected distances into proper evolutionary distances for phylogenetic inference. F1000Res 2020; 9:1309 [View Article] [PubMed]
    [Google Scholar]
  35. Kämpfer P, Kroppenstedt RM. Pseudonocardia benzenivorans sp. nov. Int J Syst Evol Microbiol 2004; 54:749–751 [View Article] [PubMed]
    [Google Scholar]
  36. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  37. MacKenzie SL. Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 1987; 70:151–160 [PubMed]
    [Google Scholar]
  38. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article] [PubMed]
    [Google Scholar]
  39. Brückner H, Haasmann S, Langer M, Westhauser T, Wittner R et al. Liquid chromatographic determination of d- and l-amino acids by derivatization with o-phthaldialdehyde and chiral thiols. J Chrom A 1994; 666:259–273 [View Article]
    [Google Scholar]
  40. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  41. Lin YC, Uemori K, de Briel DA, Arunpairojana V, Yokota A. Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int J Syst Evol Microbiol 2004; 54:1669–1676 [View Article] [PubMed]
    [Google Scholar]
  42. Halpern M, Shakéd T, Pukall R, Schumann P. Leucobacter chironomi sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 2009; 59:665–670 [View Article] [PubMed]
    [Google Scholar]
  43. Sasaki J, Chijimatsu M, Suzuki K-I. Taxonomic significance of 2,4-diaminobutyric acid isomers in the cell wall peptidoglycan of actinomycetes and reclassification of Clavibacter toxicus as Rathayibacter toxicus comb. nov. Int J Syst Bacteriol 1998; 48 Pt 2:403–410 [View Article]
    [Google Scholar]
  44. Schumann P, Pukall R. Leucobacter weissii sp. nov., an isolate from activated sludge once described as first representative of the peptidoglycan variation B2δ, and emended description of the genus Leucobacter. Int J Syst Evol Microbiol 2017; 67:5244–5251 [View Article] [PubMed]
    [Google Scholar]
  45. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  46. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  47. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  48. Chun BH, Lee HJ, Jeong SE, Schumann P, Jeon CO. Leucobacter ruminantium sp. nov., isolated from the bovine rumen. Int J Syst Evol Microbiol 2017; 67:2634–2639 [View Article] [PubMed]
    [Google Scholar]
  49. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  50. Altenburger P, Kämpfer P, Akimov VN, Lubit W, Busse H-J. Polyamine distribution in actinomycetes with Group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium, and Tsukamurella. Int J Syst Bacteriol 1997; 47:270–277 [View Article]
    [Google Scholar]
  51. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Evol Microbiol 1997; 47:698–708 [View Article]
    [Google Scholar]
  52. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article] [PubMed]
    [Google Scholar]
  53. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  54. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005156
Loading
/content/journal/ijsem/10.1099/ijsem.0.005156
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error