1887

Abstract

Harmful algal blooms caused by result in enormous economic damage to the aquaculture industry. Biological control methods have attracted wide attention due to their environmental-friendliness. In this study, a novel algicidal bacterium, designated strain M26A2M, was determined for its taxonomic position and was evaluated for its potential to mitigate blooms. Strain M26A2M exhibited the highest 16S rRNA gene sequence similarity to the type strains of (97.3%), (97.2%), (96.8%) and (96.4%) in the family . The predominant fatty acids were C 3-OH and summed feature 8 (comprising C 7 and/or C 6). The major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and three unidentified lipids. Q-10 was the respiratory quinone. Strain M26A2M exerted significant algicidal activity against cells by destroying the membrane integrity and the photosynthetic system. Our findings suggest that strain M26A2M shows a high potential to control outbreaks of . Based on the polyphasic characterization, strain M26A2M is considered to represent a novel species within a novel genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain is M26A2M (=KCTC 82083=JCM 34119).

Funding
This study was supported by the:
  • Ministry of Science, ICT and Future Planning (Award 2016M1A5A1027453)
    • Principle Award Recipient: Hee-MockOh
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005124
2021-11-30
2024-10-03
Loading full text...

Full text loading...

References

  1. Garrity GM, Bell JA, Lilburn T. Rhodobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology New York: Springer; 2005 p 161
    [Google Scholar]
  2. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  3. Parte AC, Carbasse JS, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic Names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  4. Moran MA, González JM, Kiene RP. Linking a bacterial taxon to sulfur cycling in the sea: Studies of the marine Roseobacter group. Geomicrobiol J 2003; 20:375–388 [View Article]
    [Google Scholar]
  5. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005; 71:5665–5677 [View Article] [PubMed]
    [Google Scholar]
  6. Geng H, Belas R. Molecular mechanisms underlying Roseobacter-Phytoplankton symbioses. Curr Opin Biotechnol 2010; 21:332–338 [View Article] [PubMed]
    [Google Scholar]
  7. Kent AG, Garcia CA, Martiny AC. Increased biofilm formation due to high-temperature adaptation in marine Roseobacter. Nat Microbiol 2018; 3:989–995 [View Article] [PubMed]
    [Google Scholar]
  8. Wagner-Döbler I, Rheims H, Felske A, El-Ghezal A, Flade-Schröder D et al. Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. Int J Syst Evol Microbiol 2004; 54:1177–1184 [View Article] [PubMed]
    [Google Scholar]
  9. Seyedsayamdost MR, Carr G, Kolter R, Clardy J. Roseobacticides: Small molecule modulators of an algal-bacterial symbiosis. J Am Chem Soc 2011; 133:18343–18349 [View Article] [PubMed]
    [Google Scholar]
  10. Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM et al. Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine Roseobacter Phaeobacter sp. strain Y4I. Appl Environ Microbiol 2012; 78:4771–4780 [View Article] [PubMed]
    [Google Scholar]
  11. Gromek SM, Suria AM, Fullmer MS, Garcia JL, Gogarten JP et al. Leisingera sp. JC1, a bacterial isolate from hawaiian bobtail squid eggs, produces indigoidine and differentially inhibits vibrios. Front Microbiol 2016; 7:1–16 [View Article]
    [Google Scholar]
  12. Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A et al. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 2004; 70:2560–2565 [View Article] [PubMed]
    [Google Scholar]
  13. López-Cortés DJ, Núñez Vázquez EJ, Dorantes-Aranda JJ, Band-Schmidt CJ, Hernández-Sandoval FE et al. The state of knowledge of harmful algal blooms of Margalefidinium polykrikoides (a.k.a. Cochlodinium polykrikoides) in Latin America. Front Mar Sci 2019; 6:1–10 [View Article]
    [Google Scholar]
  14. Shin M, Lee HJ, Kim MS, Park NB, Lee C. Control of the red tide dinoflagellate Cochlodinium polykrikoides by ozone in seawater. Water Res 2017; 109:237–244 [View Article] [PubMed]
    [Google Scholar]
  15. Ki JS, Ebenezer V, Lim WA. Yellow clay modulates carbohydrate and glutathione responses in the harmful dinoflagellate Cochlodinium polykrikoides and leads to sedimentation. Eur J Protistol 2019; 71:125642 [View Article] [PubMed]
    [Google Scholar]
  16. Lee YC, Jin E, Jung SW, Kim YM, Chang KS et al. Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides. Sci Rep 2013; 3:1–8 [View Article]
    [Google Scholar]
  17. Sun R, Sun P, Zhang J, Esquivel-Elizondo S, Wu Y. Microorganisms-based methods for harmful algal blooms control: A review. Bioresour Technol 2018; 248:12–20 [View Article] [PubMed]
    [Google Scholar]
  18. Meyer N, Bigalke A, Kaulfuß A, Pohnert G. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol Rev 2017; 41:880–899 [View Article] [PubMed]
    [Google Scholar]
  19. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  20. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucl Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  21. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC bioinformatics resource center: Expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [View Article] [PubMed]
    [Google Scholar]
  22. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  23. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. troducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  25. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  26. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:W22–W28 [View Article] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  29. Fuentes JL, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M et al. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs 2016; 14:100 [View Article]
    [Google Scholar]
  30. Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol Adv 2016; 34:14–29 [View Article] [PubMed]
    [Google Scholar]
  31. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 2005; 438:90–93 [View Article] [PubMed]
    [Google Scholar]
  32. Osbourn A. Secondary metabolic gene clusters: Evolutionary toolkits for chemical innovation. Trends Genet 2010; 26:449–457 [View Article] [PubMed]
    [Google Scholar]
  33. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial quorum sensing and microbial community interactions. mBio 2018; 9:e02331-17 [PubMed]
    [Google Scholar]
  34. Eberl L. N-acyl homoserinelactone-mediated gene regulation in Gram-negative bacteria. Syst Appl Microbiol 1999; 22:493–506 [View Article] [PubMed]
    [Google Scholar]
  35. Garbeva P, Hordijk C, Gerards S, de Boer W. Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol Ecol 2014; 87:639–649 [View Article] [PubMed]
    [Google Scholar]
  36. Zhang Y, Chen M, Bruner SD, Ding Y. Heterologous production of microbial ribosomally synthesized and post-translationally modified peptides. Front Microbiol 2018; 9:1–13 [View Article]
    [Google Scholar]
  37. Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front Pharmacol 2017; 8:1–26 [View Article]
    [Google Scholar]
  38. Ridley CP, Lee HY, Khosla C. Evolution of polyketide synthases in bacteria. Proc Natl Acad Sci USA 2008; 105:4595–4600 [View Article] [PubMed]
    [Google Scholar]
  39. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The family Rhodobacteraceae. In Rosenberg E, DeLong EF, Stackebrandt E, Lory S, Thompson F. eds The Prokaryotes-Alphaproteobacteria and Betaproteobacteria Berlin: Springer; 2014 pp 439–512
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  41. Liu A, Zhang YJ, Cheng P, Peng YJ, Blom J et al. Whole genome analysis calls for a taxonomic rearrangement of the genus Colwellia. Antonie van Leeuwenhoek 2020; 113:919–931 [View Article]
    [Google Scholar]
  42. Wirth JS, Whitman WB. Phylogenomic analyses of a clade within the Roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 2018; 68:2393–2411 [View Article] [PubMed]
    [Google Scholar]
  43. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: An advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73
    [Google Scholar]
  44. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  45. Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  46. Fitch WM. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  47. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 DOI: 10.1093/molbev/msab120
    [Google Scholar]
  48. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  49. Jukes T, Cantor C. Evolution of protein molecules. In Munro H. eds Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  50. Smibert R, Krieg N. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; pp 607–654
    [Google Scholar]
  51. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article] [PubMed]
    [Google Scholar]
  52. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  53. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  54. Tindall B, Sikorski J, Smibert R, Krieg N. Phenotypic characterization and the principles of comparative systematic. In Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  55. Kates M. Techniques of Lipidology: Isolation, Analysis and Identification of Lipids. Amsterdam: North-Holland Pub. Co; 1972
  56. Oren A, Duker S, Ritter S. The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett 1996; 138:135–140 [View Article]
    [Google Scholar]
  57. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:251–256 [View Article] [PubMed]
    [Google Scholar]
  58. Mayali X, Azam F. Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 2004; 51:139–144 [View Article] [PubMed]
    [Google Scholar]
  59. Wang M, Chen S, Zhou W, Yuan W, Wang D. Algal cell lysis by bacteria: A review and comparison to conventional methods. Algal Research 2020; 46:101794 [View Article]
    [Google Scholar]
  60. Gómez F, Richlen ML, Anderson DM. Molecular characterization and morphology of Cochlodinium strangulatum, the type species of Cochlodinium, and Margalefidinium gen. nov. for C. polykrikoides and allied species (Gymnodiniales, Dinophyceae). Harmful Algae 2017; 63:32–44 [View Article] [PubMed]
    [Google Scholar]
  61. Nogi Y, Nishi S, Koyama S. Planktotalealamellibrachiae sp. nov., isolated from a marine organism in Kagoshima Bay, Japan. Int J Syst Evol Microbiol 2017; 67:4785–4789 [View Article] [PubMed]
    [Google Scholar]
  62. Kim YO, Park S, Kim H, Park DS, Nam BH et al. Halocynthiibacter namhaensis gen. nov., sp. nov., a novel alphaproteobacterium isolated from sea squirt Halocynthia roretzi. Antonie van Leeuwenhoek 2014; 105:881–889 [View Article]
    [Google Scholar]
  63. Won SM, Park S, Park JM, Kim BC, Yoon JH. Pseudohalocynthiibacter aestuariivivens gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2015; 65:1509–1514 [View Article] [PubMed]
    [Google Scholar]
  64. Baek K, Lee YM, Shin SC, Hwang K, Hwang CY et al. Halocynthiibacter arcticus sp. nov., isolated from arctic marine sediment. Int J Syst Evol Microbiol 2015; 65:3861–3865 [View Article] [PubMed]
    [Google Scholar]
  65. Hahnke S, Tindall BJ, Schumann P, Sperling M, Brinkhoff T et al. Planktotalea frisia gen. nov., sp. nov., isolated from the southern North Sea. Int J Syst Evol Microbiol 2012; 62:1619–1624 [View Article] [PubMed]
    [Google Scholar]
  66. Baek K, Choi A, Lee YM, Lee HK, Cho JC. Planktotalea arctica sp. nov., isolated from arctic seawater. Int J Syst Evol Microbiol 2017; 67:3501–3505 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005124
Loading
/content/journal/ijsem/10.1099/ijsem.0.005124
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error