1887

Abstract

Strain Llam7 was isolated from microbial mat samples from the hypersaline lake Salar de Llamará, located in Taracapá region in the hyper-arid core of the Atacama Desert (Chile). Phenotypic, chemotaxonomic and genomic traits were studied. Phylogenetic analyses based on 16S rRNA gene sequences assigned the strain to the family with affiliation to the genera and . Major fatty acids were Cω8, iso-C, iso-C and anteiso-C. The cell walls contained -diaminopimelic acid and -2,6 diaminopimelic acid (-DAP), while major whole-cell sugars were glucose, mannose, xylose and ribose. The major menaquinones were MK-9(H) and MK-9(H). As polar lipids phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and several unidentified lipids, i.e. two glycolipids, one aminolipid, three phospholipids, one aminoglycolipid and one phosphoglycolipid, were detected. Genome sequencing revealed a genome size of 6.894 Mb and a DNA G+C content of 71.4 mol%. Phylogenetic analyses with complete genome sequences positioned strain Llam7 within the family forming a distinct cluster with (former ) DSM 45730. This cluster is related to KJ-029, NA12, and LHW63014 as well as to all members of the former genera and , which were re-classified as members of the genus , forming a clade distinct from the genus . Pairwise whole genome average nucleotide identity (ANI) values, digital DNA–DNA hybridization (dDDH) values, the presence of the diamino acid -DAP, and the composition of whole sugars and polar lipids indicate that Llam7 represents a novel species, for which the name sp. nov. is proposed, with Llam7 (=DSM 109510,=LMG 31023) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005109
2021-11-17
2024-04-29
Loading full text...

Full text loading...

References

  1. Krasil’nikov N. Ray fungi and related organisms – Actinomycetales. Moscow Akad Nauk SSSR 1938
    [Google Scholar]
  2. Ørskov J. Investigations into the Morphology of the Ray Fungi Copenhagen, Denmark: Levin and Munksgaard; 1923
    [Google Scholar]
  3. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. Goodfellow M, Minnikin D. eds In Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 173–199
    [Google Scholar]
  4. Kasai H, Tamura T, Harayama S. Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. Int J Syst Evol Microbiol 2000; 50:127–134 [View Article] [PubMed]
    [Google Scholar]
  5. Koch C, Kroppenstedt RM, Stackebrandt E. Intrageneric relationships of the actinomycete genus Micromonospora. Int J Syst Bacteriol 1996; 46:383–387 [View Article]
    [Google Scholar]
  6. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:1–119 [View Article]
    [Google Scholar]
  7. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 20200–5
    [Google Scholar]
  8. Carro L, Golinska P, Nouioui I, Bull AT, Igual JM. Micromonospora acroterricola sp. nov., a novel actinobacterium isolated from a high altitude Atacama Desert soil. Int J Syst Evol Microbiol 2019; 69:3426–3436 [View Article] [PubMed]
    [Google Scholar]
  9. Bull AT, Idris H, Sanderson R, Asenjo J, Andrews B. High altitude, hyper-arid soils of the Central-Andes harbor mega-diverse communities of actinobacteria. Extremophiles 2018; 22:47–57 [View Article] [PubMed]
    [Google Scholar]
  10. Rasuk MC, Contreras Leiva M, Kurth D, Farías ME. Complete characterization of stratified ecosystems of the Salar de Llamara (Atacama Desert). Farías ME. ed. In Microbial Ecosystems in Central Andes Extreme Environments Springer International Publishing; pp 153–164
    [Google Scholar]
  11. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M. Introducing EzTaxon-e: A prokaryotic 16s rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  12. Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  15. Perrière G, Gouy M. WWW-Query: An on-line retrieval system for biological sequence banks. Biochimie 1996; 78:364–369 [View Article] [PubMed]
    [Google Scholar]
  16. Li L, Zhu HR, Xu QH, Lin HW, Li YH. Micromonospora craniellae sp. nov., isolated from a marine sponge, and reclassification of Jishengella endophytica as Micromonospora endophytica comb. nov. Int J Syst Evol Microbiol 2019; 69:715–720 [View Article] [PubMed]
    [Google Scholar]
  17. Ay H, Nouioui I, Klenk HP, Cetin D, Igual JM. Genome-based classification of Micromonospora craterilacus sp. nov., a novel actinobacterium isolated from Nemrut Lake. Antonie van Leeuwenhoek 2020; 113:791–801 [View Article]
    [Google Scholar]
  18. Thawai C, He YW, Tadtong S. Jishengella zingiberis sp. nov., isolated from root tissue of Zingiber montanum. Int J Syst Evol Microbiol 2018; 68:3345–3350 [View Article] [PubMed]
    [Google Scholar]
  19. Wang X, Jia F, Liu C, Zhao J, Wang L. Xiangella phaseoli gen. nov., sp. nov., a member of the family Micromonosporaceae. Int J Syst Evol Microbiol 2013; 63:2138 [View Article] [PubMed]
    [Google Scholar]
  20. Ahmed L, Jensen PR, Freel KC, Brown R, Jones AL. Salinispora pacifica sp. nov., an actinomycete from marine sediments. Antonie van Leeuwenhoek 2013; 103:1069–1078 [View Article]
    [Google Scholar]
  21. Román-Ponce B, Millán-Aguiñaga N, Guillen-Matus D, Chase AB, Ginigini JGM et al. Six novel species of the obligate marine actinobacterium Salinispora, Salinispora cortesiana sp. nov., Salinispora fenicalii sp. nov., Salinispora goodfellowii sp. nov., Salinispora mooreana sp. nov., Salinispora oceanensis sp. nov. and Salinispora vitiensis sp. nov., and emended description of the genus Salinispora. Int J Syst Evol Microbiol 2020; 70:4668–4682 [View Article] [PubMed]
    [Google Scholar]
  22. Ngaemthao W, Pujchakarn T, Chunhametha S, Suriyachadkun C. Verrucosispora endophytica sp. nov., isolated from the root of wild orchid (Grosourdya appendiculata (Blume) Rchb.f.). Int J Syst Evol Microbiol 2017; 67:5114–5119 [View Article] [PubMed]
    [Google Scholar]
  23. Saygin H, Ay H, Guven K, Cetin D, Sahin N. Micromonospora deserti sp. nov., isolated from the Karakum Desert. Int J Syst Evol Microbiol 2020; 70:282–291 [View Article] [PubMed]
    [Google Scholar]
  24. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  25. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  26. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:112963 [View Article] [PubMed]
    [Google Scholar]
  27. Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  28. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, Van Wezel GP. AntiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  29. Du Y, Wang Y, Huang T, Tao M, Deng Z. Identification and characterization of the biosynthetic gene cluster of polyoxypeptin A, a potent apoptosis inducer. BMC Microbiol 2014; 14:30 [View Article] [PubMed]
    [Google Scholar]
  30. Wenzel SC, Bode HB, Kochems I, Müller R. A type I/type III polyketide synthase hybrid biosynthetic pathway for the structurally unique ansa compound kendomycin. Chembiochem 2008; 9:2711–2721 [View Article] [PubMed]
    [Google Scholar]
  31. Huang F, Haydock SF, Spiteller D, Mironenko T, Li TL. The gene cluster for fluorometabolite biosynthesis in Streptomyces cattleya: a thioesterase confers resistance to fluoroacetyl-coenzyme A. Chem Biol 2006; 13:475–484 [View Article] [PubMed]
    [Google Scholar]
  32. Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME et al. Genome-based classification of Micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 2018; 8:1–23
    [Google Scholar]
  33. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2020; 36:1925–1927
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  36. Lee I, Kim YO, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  37. Harrison E, Brockhurst MA. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. BioEssays 2017; 39: [View Article]
    [Google Scholar]
  38. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article]
    [Google Scholar]
  39. Song W, Sun HX, Zhang C, Cheng L, Peng Y et al. Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res 2019; 47:W74–W80 [View Article] [PubMed]
    [Google Scholar]
  40. Thung TY, White ME, Dai W, Wilksch JJ, Bamert RS et al. Component parts of bacteriophage virions accurately defined by a machine-learning approach built on evolutionary features. mSystems 2021; 6:e0024221 [View Article]
    [Google Scholar]
  41. Lopes A, Tavares P, Petit MA, Guérois R, Zinn-Justin S. Automated classification of tailed bacteriophages according to their neck organization. BMC Genomics 2014; 15:1027 [View Article] [PubMed]
    [Google Scholar]
  42. Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H. ViPTree: The viral proteomic tree server. Bioinformatics 2017; 33:2379–2380 [View Article] [PubMed]
    [Google Scholar]
  43. Boyde A, Wood C. Preparation of animal tissues for surface‐scanning electron microscopy. J Microsc 1969; 90:221–249 [View Article] [PubMed]
    [Google Scholar]
  44. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 2001; 101:1–6
    [Google Scholar]
  45. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  46. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  47. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt LRS TM. eds In Methods for General and Molecular Microbiology ASM Press; pp 330–393
    [Google Scholar]
  48. Rhuland LE, Work E, Denmanb RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955; 77:4844–4846 [View Article]
    [Google Scholar]
  49. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005109
Loading
/content/journal/ijsem/10.1099/ijsem.0.005109
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error